(本小題滿分14分)如圖,三棱柱ABC—A1B1C1中,AA1面ABC,BCAC,BC=AC=2,D為AC的中點(diǎn)。[
(1)求證:AB1//面BDC1
(2)若AA1=3,求二面角C1—BD—C的余弦值;
(3)若在線段AB1上存在點(diǎn)P,使得CP面BDC1,試求AA1的長(zhǎng)及點(diǎn)P的位置。

(1)見解析(2)(3)點(diǎn)P位置是在線段AB1上且

(1)連接B1C,交BC1于點(diǎn)O,
則O為B1C的中點(diǎn),
D為AC中點(diǎn),
,
平面BDC1,平面BDC1
             BDC1    4分
(2)平面ABC,BCAC,AA1//CC­1,
面ABC,
則BC平面AC1,CC1AC
如圖建系,則


設(shè)平面C1DB的法向量為 z

又平面BDC的法向量為
二面角C1—BD—C的余弦值:
   9分
(3)設(shè)


面BDC1,

解得
所以AA1=2,點(diǎn)P位置是在線段AB1上且 14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四面體中,,點(diǎn)分別是 的中點(diǎn).

求證:(1)直線;
(2)平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


(本題滿分12分)
在直角梯形PBCD中,,A為PD的中點(diǎn),如下左圖。將沿AB折到的位置,使,點(diǎn)E在SD上,且,如下右圖。
(1)求證:平面ABCD;
  (2)求二面角E—AC—D的正切值;
(3)在線段BC上是否存在點(diǎn)F,使SF//平面EAC?若存在,確定F的位置, 若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知長(zhǎng)方體的全面積為,其條棱的長(zhǎng)度之和為,則這個(gè)長(zhǎng)方體的一條
對(duì)角線長(zhǎng)為(    ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為8cm,M、N、P分別是AB、A1D1、BB1的中點(diǎn);(1)畫出過(guò)M、N、P三點(diǎn)的平面與平面A1B1C1D1的交線以及與平面BB1C1C的交線;(2)設(shè)過(guò)M、N、P三點(diǎn)的平面與B1C1交于點(diǎn)Q,求PQ的長(zhǎng);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題共12分)

在三棱柱ABC—A1B1C1中,底面是邊長(zhǎng)為的正三角形,點(diǎn)A1在底面ABC上的射影O恰是BC的中點(diǎn).
(1)求證:面A1AOBCC1B1;
(2)當(dāng)AA1與底面成45°角時(shí),求二面角A1AC—B的大。
(3)若D為側(cè)棱AA1上一點(diǎn),當(dāng)為何值時(shí),BDA1C1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)的直線與過(guò)點(diǎn)的直線垂直,則       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)球的半徑是1,、是球面上三點(diǎn),已知、兩點(diǎn)的球面距離都是,且二面角的大小是,則從點(diǎn)沿球面經(jīng)兩點(diǎn)再回到點(diǎn)的最短距離是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

A.過(guò)平面外一點(diǎn)作這個(gè)平面的垂直平面是唯一的
B.過(guò)平面的一條斜線作這個(gè)平面的垂直平面是唯一的
C.過(guò)直線外一點(diǎn)作這直線的平行平面是唯一的
D.過(guò)直線外一點(diǎn)作這直線的垂線是唯一的

查看答案和解析>>

同步練習(xí)冊(cè)答案