【題目】定義:在等式 中,把, , ,…, 叫做三項(xiàng)式的次系數(shù)列(如三項(xiàng)式的1次系數(shù)列是1,1,1).
(1)填空:三項(xiàng)式的2次系數(shù)列是_______________;
三項(xiàng)式的3次系數(shù)列是_______________;
(2)由楊輝三角數(shù)陣表可以得到二項(xiàng)式系數(shù)的性質(zhì),類似的請用三項(xiàng)式次系數(shù)列中的系數(shù)表示 (無須證明);
(3)求的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù), ),直線的極坐標(biāo)方程為.
(1)寫出曲線的普通方程和直線的直角坐標(biāo)方程;
(2)為曲線上任意一點(diǎn), 為直線任意一點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 平面, , ,且, , .
(1)求證: ;
(2)在線段上,是否存在一點(diǎn),使得二面角的大小為,如果存在,求與平面所成角,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校與英國某高中結(jié)成友好學(xué)校,該校計(jì)劃選派3人作為交換生到英國進(jìn)行一個(gè)月的生活體驗(yàn),學(xué)校準(zhǔn)備從該校英語興趣小組的6名同學(xué)中選派,已知英語興趣小組中男生有4人,女生有2人
(1)求男生甲或女生乙被選的概率
(2)記選派的3人中的女生人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
(1)判斷函數(shù)f(x)的奇偶性,并證明.
(2)求函數(shù)f(x)的單調(diào)性及值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2x+1的定義域?yàn)閇1,5],則函數(shù)f(2x﹣3)的定義域?yàn)椋?/span> )
A.[1,5]
B.[3,11]
C.[3,7]
D.[2,4]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:
①若,則“”是“”成立的充分不必要條件;
②若橢圓的兩個(gè)焦點(diǎn)為,且弦過點(diǎn),則的周長為16;
③若命題“”與命題“或”都是真命題,則命題一定是真命題;
④若命題: ,則:
其中為真命題的是__________(填序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù), ),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系.
(1)寫出的極坐標(biāo)方程;
(2)若為曲線上的兩點(diǎn),且,求的范圍.
(Ⅱ)已知函數(shù), .
(1) 時(shí),解不等式;
(2)若對任意,存在,使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(Ⅰ) 求曲線與交點(diǎn)的平面直角坐標(biāo);
(Ⅱ) 點(diǎn)分別在曲線, 上,當(dāng)最大時(shí),求的面積(為坐標(biāo)原點(diǎn)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com