已知橢圓的標準方程為
,若橢圓的焦距為
,則
的取值集合為
。
當
時,有
即
,此時
或
;當
時,有
即
,此時
。綜上可得,
的取值集合為
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
+
=1的焦點F
1、F
2,在直線
l:
x+y-6=0上找一點M,求以F
1、F
2為焦點,通過點M且長軸最短的橢圓方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的左右焦點為
,過點
且斜率為正數(shù)的直線
交橢圓
于
兩點,且
成等差數(shù)列。
(1)求橢圓
的離心率;
(2)若直線
與橢圓
交于
兩點,求使四邊形
的面積最大時的
值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知點
分別為橢圓
的左、右焦點,點
為橢圓上任意一點,
到焦點
的距離的最大值為
,且
的最大面積為
.
(I)求橢圓
的方程。
(II)點
的坐標為
,過點
且斜率為
的直線
與橢圓
相交于
兩點。對于任意的
是否為定值?若是求出這個定值;若不是說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題12分)已知橢圓的中心在原點,左焦點為
,右頂點為
,設點
.(1)求該橢圓的標準方程;
(2)若
是橢圓上的動點,過P點向橢圓的長軸做垂線,垂足為Q求線段PQ的中點
的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)已知橢圓
的中心在坐標原點,焦點在
軸上,橢圓上的點到
兩個焦點的距離之和為
,離心率
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設橢圓
的左、右焦點分別為
、
,過點
的直線
與該橢圓交于點
、
,
以
、
為鄰邊作平行四邊形
,求該平行四邊形對角線
的長度
的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的左、右焦點分別為
,且經(jīng)過定點
,
為橢圓
上的動點,以點
為圓心,
為半徑作圓
.
(1)求橢圓
的方程;
(2)若圓
與
軸有兩個不同交點,求點
橫坐標
的取值范圍;
(3)是否存在定圓
,使得圓
與圓
恒相切?若存在,求出定圓
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,橢圓
上的點
到焦點
的距離為2,
為
的中點,則
(
為坐標原點)的值為
A.8 | B.2 | C.4 | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(.(本小題滿分12分)
如圖,焦距為2的橢圓E的兩個頂點分別為
和
,且
與
共線.
(Ⅰ)求橢圓E的標準方程;
(Ⅱ)若直線
與橢圓E有兩個不同的交點
P和
Q,且原點
O總在以
PQ為直徑的圓的內(nèi)部,求實數(shù)
m的取值范圍.
查看答案和解析>>