【題目】已知函數(shù)f(x)=a3x+1 , g(x)=( )5x﹣2 , 其中a>0,且a≠1.
(1)若0<a<1,求滿足f(x)<1的x的取值范圍;
(2)求關(guān)于x的不等式f(x)≥g(x)的解集.
【答案】
(1)
解:f(x)=a3x+1,0<a<1,
由f(x)<1,即a3x+1<1=a0,
由0<a<1,
∴f(x)=a3x+1,在(﹣∞,+∞)上單調(diào)遞減,
∴3x+1>0,解得:x>﹣ ,
∴滿足f(x)<1的x的取值范圍(﹣ ,+∞)
(2)
解:由不等式f(x)≥g(x),即a3x+1≥( )5x﹣2=a2﹣5x,
當(dāng)0<a<1時(shí),函數(shù)f(x)=ax在R單調(diào)遞減,
∴3x+1≤2﹣5x,解得:x≤ ,
當(dāng)a>1時(shí),函數(shù)f(x)=ax在R單調(diào)遞增,
3x+1≥2﹣5x,解得:x≥ ,
故當(dāng)0<a<1時(shí),解集為:{x丨x≤ };當(dāng)a>1時(shí),解集為:{x丨x≥ }
【解析】(1)由f(x)<1,即a3x+1<1=a0 , 由0<a<1,則f(x)=a3x+1 , 在(﹣∞,+∞)上單調(diào)遞減,因此3x+1>0,解得:x>﹣ ,即可求得f(x)<1的x的取值范圍;(2)由不等式f(x)≥g(x),即a3x+1≥( )5x﹣2=a2﹣5x , 則0<a<1時(shí),函數(shù)f(x)=ax在R單調(diào)遞減,則3x+1≤2﹣5x,解得:x≥ ,同理當(dāng)x>1時(shí),即可求得不等式f(x)≥g(x)的解集.
【考點(diǎn)精析】關(guān)于本題考查的指數(shù)函數(shù)的圖像與性質(zhì),需要了解a0=1, 即x=0時(shí),y=1,圖象都經(jīng)過(0,1)點(diǎn);ax=a,即x=1時(shí),y等于底數(shù)a;在0<a<1時(shí):x<0時(shí),ax>1,x>0時(shí),0<ax<1;在a>1時(shí):x<0時(shí),0<ax<1,x>0時(shí),ax>1才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),數(shù)列的前項(xiàng)和為,點(diǎn)在圖象上,且的最小值為.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足,記數(shù)列的前項(xiàng)和為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= ﹣lg(x﹣1)的定義域是( )
A.[2,+∞)
B.(﹣∞,2)
C.(1,2]
D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)=ax2﹣2ax+b+1(a>0)在區(qū)間[2,3]上有最大值4和最小值1.設(shè)f(x)= .
(1)求a、b的值;
(2)若不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) ).
(1)若直線和函數(shù)的圖象相切,求的值;
(2)當(dāng)時(shí),若存在正實(shí)數(shù),使對任意都有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知集合M={﹣1,1,2,4}N={0,1,2}給出下列四個(gè)對應(yīng)法則,其中能構(gòu)成從M到N的函數(shù)是( )
A.y=x2
B.y=x+1
C.y=2x
D.y=log2|x|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】本公司計(jì)劃2008年在甲,乙兩個(gè)電視臺(tái)做總時(shí)間不超過300分鐘的廣告,廣告總費(fèi)用不超過9萬元,甲,乙電視臺(tái)的廣告收費(fèi)標(biāo)準(zhǔn)分別為500元/分鐘和200元/分鐘,規(guī)定甲,乙兩個(gè)電視臺(tái)為該公司所做的每分鐘廣告,能給公司事來的收益分別為0.3萬元和0.2萬元,問該公司如何分配在甲,乙兩個(gè)電視臺(tái)的廣告時(shí)間,才能使公司的收益最大,最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下三個(gè)命題中:
①設(shè)有一個(gè)回歸方程 =2﹣3x,變量x增加一個(gè)單位時(shí),y平均增加3個(gè)單位;
②兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近于1;
③在某項(xiàng)測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內(nèi)取值的概率為0.4,則ξ在(0,2)內(nèi)取值的概率為0.8.
其中真命題的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面是關(guān)于復(fù)數(shù)z= 的四個(gè)命題:p1:|z|=2,p2:z2=2i,p3:z的共軛復(fù)數(shù)為1+i,p4:z的虛部為﹣1.
其中的真命題為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com