已知一個(gè)圓的圓心為坐標(biāo)原點(diǎn)O,半徑為2,從這個(gè)圓上任意一點(diǎn)P向x軸作垂線PP′,P′為垂足.
(Ⅰ)求線段PP′中點(diǎn)M的軌跡方程; 
(Ⅱ)已知直線x-y-2=0與M的軌跡相交于A、B兩點(diǎn),求△OAB的面積.
分析:(Ⅰ)圓心為坐標(biāo)原點(diǎn)O,半徑為2的圓的方程為x2+y2=4,確定M,P之間的關(guān)系,利用代入法,即可求得線段PP′中點(diǎn)M的軌跡方程; 
(Ⅱ)直線x-y-2=0與橢圓方程聯(lián)立,消去y,求出A,B的坐標(biāo),即可求△OAB的面積.
解答:解:(Ⅰ)設(shè)M(x,y),則P(x,2y)
∵圓心為坐標(biāo)原點(diǎn)O,半徑為2的圓的方程為x2+y2=4,P在圓上
∴x2+4y2=4
∴線段PP′中點(diǎn)M的軌跡方程為
x2
4
+y2=1
; 
(Ⅱ)直線x-y-2=0與橢圓方程聯(lián)立,消去y可得5x2-16x+12=0,∴x=
6
5
或x=2
∴A(
6
5
,-
4
5
),B(2,0)
S△OAB=
1
2
|OB|h=
1
2
×2×
4
5
=
4
5
點(diǎn)評(píng):本題考查代入法求軌跡方程,考查直線與橢圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)圓的圓心為坐標(biāo)原點(diǎn),半徑為5,從這個(gè)圓上任一點(diǎn)p向x軸作垂線PP’,垂足為P’,M為線段PP’上一點(diǎn),且滿足:
MP
=4
PM

(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)若過(guò)電(3,0)且斜率為1的直線交曲線C于A、B兩點(diǎn),求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)圓的圓心為坐標(biāo)原點(diǎn),半徑為2.從這個(gè)圓上任意一點(diǎn)P向x軸作垂線PP′,垂足為P′,求線段PP′中點(diǎn)M的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)圓的圓心為坐標(biāo)原點(diǎn),半徑為2,從這個(gè)圓上任意一點(diǎn)P向x軸作垂線段PP′,則線段PP′的中點(diǎn)M的軌跡方程為_(kāi)_______________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年蘇教版高中數(shù)學(xué)選修2-1 2.2橢圓練習(xí)卷(解析版) 題型:選擇題

已知一個(gè)圓的圓心為坐標(biāo)原點(diǎn),半徑為2,從這個(gè)圓上任意一點(diǎn)P向x軸作垂線段,則線段的中點(diǎn)M的軌跡是(    )

A.圓          B.橢圓

C.直線        D.以上都有可能

 

查看答案和解析>>

同步練習(xí)冊(cè)答案