設圓:(1)截y軸所得弦長為2;(2)被x軸分成兩段圓弧,其弧長的比為3∶1。則在滿足條件(1)、(2)的所有圓中,求圓心到直線l:x-2y=0的距離最小的圓的方程。

設所求圓的圓心為P(a,b),半徑為r,則P到x軸、y軸的距離分別為|b|、|a|.

由題設得:  ∴ 2b-a=1  

又點P(a,b)到直線 x-2y=0距離為 d= .

∴5d=|a-2b|= a+4b-4ab≥a+4b-2(a+b)=2b2-a2=1 .

當且僅當a=b時,上式等號成立,d取得最小值.  ∴

    故所求圓的方程為(x±1)+(y±1)=2 .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點P是圓x2+y2=1上的動點,點P在y軸上的射影為Q,設滿足條件
QM
=2
QP
的點M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設過點N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點為A,O為坐標原點,直線OA的斜率為k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•湖北模擬)已知圓M的圓心M在x軸上,半徑為1,直線l:y=
4
3
x-
1
2
,被圓M所截的弦長為
3
,且圓心M在直線l的下方.
(I)求圓M的方程;
(II)設A(0,t),B(0,t+6)(-5≤t≤-2),若圓M是△ABC的內(nèi)切圓,求△ABC的面積S的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓M的圓心M在y軸上,半徑為1.直線l:y=2x+2被圓M所截得的弦長為
4
5
5
,且圓心M在直線l的下方.
(1)求圓M的方程;
(2)設A(t,0),B(t+5,0)(-4≤t≤-1),若AC,BC是圓M的切線,求△ABC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年高考數(shù)學復習卷B(四)(解析版) 題型:解答題

已知圓M的圓心M在y軸上,半徑為1.直線l:y=2x+2被圓M所截得的弦長為,且圓心M在直線l的下方.
(1)求圓M的方程;
(2)設A(t,0),B(t+5,0)(-4≤t≤-1),若AC,BC是圓M的切線,求△ABC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省無錫市江陰高級中學高三(上)10月學情調(diào)研數(shù)學試卷(解析版) 題型:解答題

已知圓M的圓心M在y軸上,半徑為1.直線l:y=2x+2被圓M所截得的弦長為,且圓心M在直線l的下方.
(1)求圓M的方程;
(2)設A(t,0),B(t+5,0)(-4≤t≤-1),若AC,BC是圓M的切線,求△ABC面積的最小值.

查看答案和解析>>

同步練習冊答案