【題目】某班同學(xué)利用國慶節(jié)進(jìn)行社會實踐,對歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為低碩族,否則稱為非低碳族,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

低碳族的人數(shù)

占本組的頻率

第一組

120

0.6

第二組

195

第三組

100

0.5

第四組

0.4

第五組

30

0.3

第六組

15

0.3

(1)補(bǔ)全頻率分布直方圖并求的值(直接寫結(jié)果);

(2)從年齡段在低碳族中采用分層抽樣法抽取6人參加戶外低碳體驗活動,其中選取2人作為領(lǐng)隊,求選取的2名領(lǐng)隊中至少有1人年齡在歲的概率.

【答案】(1)頻率分布直方圖見解析, (2)

【解析】

試題分析:(1)根據(jù)頻率分布直方圖的面積是這組數(shù)據(jù)的頻率,作出頻率,除以組距得到高,畫出頻率分布直方圖的剩余部分,根據(jù)頻率、頻數(shù)和樣本容量之間的關(guān)系,即可求解的值;(2)根據(jù)分層抽樣的方法作出兩個部分的人數(shù),列舉所有試驗發(fā)生包含的事件和滿足條件的事件,根據(jù)古典概型及其概率的計算公式,即可求解概率.

試題解析:(1)第二組的頻率為,

所以高為,圖略......................3分

..........................6分

(2)歲年齡段的低碳族歲年齡段的低碳族的比值為60:30=2:1,

所以采用分層抽樣法抽取6人,歲中有4人,歲中有2人,

設(shè)歲中的4人為,歲中的2人為,則選取2人作為領(lǐng)隊的有共15種;其中至少有1人年齡在歲的有共9種,

取的2名領(lǐng)隊中至少有1人年齡在歲的概率為................12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在坐標(biāo)原點的橢圓經(jīng)過點,且點為其右焦點.

)求橢圓的標(biāo)準(zhǔn)方程

)是否存在平行于的直線,使得直線與橢圓有公共點,且直線的距離等于4?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通常表明地震能量大小的尺度是里氏震級,其計算公式為:,其中,是被測地震的最大振幅,是“標(biāo)準(zhǔn)地震”的振幅使用標(biāo)準(zhǔn)地震振幅是為了修正測震儀距實際震中的距離造成的偏差。

1假設(shè)在一次地震中,一個距離震中100千米的測震儀記錄的地震最大振幅是30,此時標(biāo)準(zhǔn)地震的振幅是0001,計算這次地震的震級精確到01;

25級地震給人的震感已比較明顯,計算8級地震的最大振幅是5級地震的最大振幅的多少倍?

以下數(shù)據(jù)供參考:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了迎接世博會,某旅游區(qū)提倡低碳生活,在景區(qū)提供自行車出租該景區(qū)有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛為了便于結(jié)算,每輛自行車的日租金只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費用,用表示出租自行車的日凈收入即一日中出租自行車的總收入減去管理費用后的所得。

1求函數(shù)的解析式及其定義域;

2試問當(dāng)每輛自行車的日租金定為多少元時,才能使一日的凈收入最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,集合

1,求實數(shù)的取值范圍;

2是否存在實數(shù),使?若存在,求出的值;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點與短軸的兩個端點是正三角形的三個項點,點在橢圓上.

(1)求橢圓的方程;

(2)設(shè)不過原點且斜率為的直線與橢圓交于不同的兩點,線段的中點為,直線與橢圓交于,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱錐P-ABC中,ACB=90°,CB=4,AB=20,D為AB中點,M為PB中點,且PDB是正三角形,PAPC。

.

(1)求證:DM平面PAC;

(2)求證:平面PAC平面ABC;

(3)求三棱錐M-BCD的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1求函數(shù)在點處的切線方程;

2求函數(shù)單調(diào)遞增區(qū)間;

3若存在,使得是自然對數(shù)的底數(shù),求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點,焦點在軸上,離心率,且橢圓經(jīng)過點,過橢圓的左焦點且不與坐標(biāo)軸垂直的直線交橢圓, 兩點.

1)求橢圓的方程;

2)設(shè)線段的垂直平分線與軸交于點,求的面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案