已知m∈R,直線l和圓C:
(1)求直線l斜率的取值范圍;
(2)直線l能否將圓C分割成弧長的比值為的兩段圓?為什么?
 (1)斜率的取值范圍是
(2)不能將圓分割成弧長的比值為的兩段弧
(1)直線的方程可化為
直線的斜率,······················································································ 2分
因為,
所以,當且僅當時等號成立.
所以,斜率的取值范圍是.·································································· 5分
(2)不能.··········································································································· 6分
由(Ⅰ)知的方程為
,其中
的圓心為,半徑
圓心到直線的距離
.························································································· 9分
,得,即.從而,若與圓相交,則圓截直線所得的弦所對的圓心角小于
所以不能將圓分割成弧長的比值為的兩段。ぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁ 12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線與圓相交,判斷與圓的位置關(guān)系是

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線截圓所得的劣弧所對圓心角為(    )
A.30B.45C.60D.90

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線交于兩點,為坐標原點,則
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在以O(shè)為原點的直角坐標系中,點A(4,-3)為△OAB的直角頂點,已知|AB|=2|OA|,且點B的縱坐標大于0。
(Ⅰ)求的坐標;
(Ⅱ)求圓關(guān)于直線OB對稱的圓的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓,點,直線.

⑴求與圓相切,且與直線垂直的直線方程
⑵在直線上(為坐標原點),存在定點(不同于點),滿足:對于圓上任一點,都有為一常數(shù),試求所有滿足條件的點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若直線l過點M(-3,- )且被圓x2+y2=25所截得的弦長是8,則l的方程為__________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

過點作直線,當斜率為何值時,直線與圓有公共點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)處的切線與圓相離,則與圓的位置關(guān)系是(    )
A.在圓內(nèi)B.在圓外C.在圓上D.不能確定

查看答案和解析>>

同步練習冊答案