【題目】(1) 若x>1,求x+的最小值;

(2) 若x>0,y>0,且2x+8y-xy=0,求xy的最小值.

【答案】(1)5;(2)64.

【解析】試題分析:(1)把原式轉(zhuǎn)化成xx11,整理后利用基本不等式求得最小值.
(2)表示出xy,利用基本不等式求得的最小值,則xy的最小值可得.

試題解析:

(1) x+=x-1++12+1=5,等號當(dāng)且僅當(dāng)x-1=,x=3時成立,

當(dāng)x=3,x+取最小值5.

(2) x>0,y>0,2x+8y-xy=0,

xy=2x+8y2,

8,xy64,等號當(dāng)且僅當(dāng)2x=8yx=4y時成立.

x=4y代入2x+8y-xy=0得正數(shù)y=4,于是x=16.

y=4,x=16,xy取最小值64.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2015高考廣東,文19】設(shè)數(shù)列的前項(xiàng)和為.已知,,,且當(dāng)

時,

(1)求的值;

(2)證明:為等比數(shù)列;

(3)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的圓臺中,是下底面圓的直徑,是上底面圓的直徑,是圓臺的一條母線.

()已知,分別為,的中點(diǎn),求證:平面;

()已知,求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6位選手參賽,在第一輪筆試環(huán)節(jié)中,評委將他們的筆試成績作為樣本數(shù)據(jù),繪制成如下圖所示的莖葉圖.為了增加結(jié)果的神秘感,主持人暫時沒有公布甲、乙兩班最后一位選手的成績.

(Ⅰ)求乙班總分超過甲班的概率;

(Ⅱ)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分.請你從平均分和方差的角度來分析兩個班的選手的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了讓貧困地區(qū)的孩子們過一個溫暖的冬天,某校陽光志愿者社團(tuán)組織“這個冬天不再冷”冬衣募捐活動,共有50名志愿者參與.志愿者的工作內(nèi)容有兩項(xiàng):①到各班做宣傳,倡議同學(xué)們積極捐獻(xiàn)冬衣;②整理、打包募捐上來的衣物.每位志愿者根據(jù)自身實(shí)際情況,只參與其中的某一項(xiàng)工作.相關(guān)統(tǒng)計(jì)數(shù)據(jù)如下表所示:

(1)如果用分層抽樣的方法從參與兩項(xiàng)工作的志愿者中抽取5人,再從這5人中選2人,那么“至少有1人是參與班級宣傳的志愿者”的概率是多少?

(2)若參與班級宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數(shù),寫出隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,已知,,底面,且,的中點(diǎn),上,且.

1)求證:平面平面;

2)求證:平面

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)已知

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè),若存在使得成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求 的單調(diào)區(qū)間;

(2)若曲線 與直線只有一個交點(diǎn), 求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+x2(a∈R)在x=﹣處取得極值.

(1)確定a的值;

(2)討論函數(shù)g(x)=f(x)ex的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案