思路分析:∵2α-β=(α-β)+α,可先求α的三角函數(shù).
解:tanα=tan[(α-β)+β]=,
∴tan2α==,tan(2α-β)==1.
∵α,β∈(0,π),
∴-π<2α-β<2π,
由tan(2α-β)=,
得cos(2α-β)=sin(2α-β).
又∵sin2(2α-β)+cos2(2α-β)=1,
∴2sin2(2α-β)=1,解得sin(2α-β)=±.
∵tanα=,α∈(0,π),∴0<α<,∴0<2α<.
又∵tanβ=-,β∈(0,π),∴<β<π.
∴-π<2α-β<0,∴sin(2α-β)=-.
溫馨提示
挖掘本題中的隱含條件,由正切值可以使用的范圍縮小,本題易忽略縮小角的范圍而出錯.
科目:高中數(shù)學(xué) 來源: 題型:
π |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com