已知盒中有10個燈泡,其中8個正品,2個次品。需要從中取出2個正品,每次取出1個,取出后不放回,直到取出2個正品為止。設(shè)ξ為取出的次數(shù),求P(ξ=4)=
A.B.C.D.
B

試題分析:題意知每次取1件產(chǎn)品,至少需2次,即ξ最小為2,有2件次品,當前2次取得的都是次品時ξ=4,得到變量的取值,當變量是2時,表示第一次取出正品,第二次取出也是正品,根據(jù)相互獨立事件同時發(fā)生的概率公式得到分布列,寫出期望.解:由題意知每次取1件產(chǎn)品,∴至少需2次,即ξ最小為2,有2件次品,當前2次取得的都是次品時,ξ=4,∴ξ可以取2,3,4當變量是2時,表示第一次取出正品,第二次取出也是正品,根據(jù)相互獨立事件同時發(fā)生的概率公式得到P(ξ=4)=1- ,故答案為B
點評:本試題考查運用概率知識解決實際問題的能力,理解獨立事件概率的乘法公式,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

1
甲、乙、丙三臺機床各自獨立地加工同一種零件,已知甲機床加工的零件是一等品而乙機床加工的零件不是一等品的概率為,乙機床加工的零件是一等品而丙機床加工的零件不是一等品的概率為,甲、丙兩臺機床加工的零件都是一等品的概率為
(1)分別求甲、乙、丙三臺機床各自加工零件是一等品的概率;
(2)從甲、乙、丙加工的零件中各取一個檢驗,求至少有一個一等品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

觀察下面一組組合數(shù)等式:

;
;
…………
(1)由以上規(guī)律,請寫出第個等式并證明;
(2)隨機變量,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

甲乙兩人進行羽毛球比賽,比賽采取五局三勝制,無論哪一方先勝三局則比賽結(jié)束,假定甲每局比賽獲勝的概率均為,則甲以的比分獲勝的概率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋一枚均勻硬幣,正反每面出現(xiàn)的概率都是,反復(fù)這樣投擲,數(shù)列定義如下:,若,則事件“”的概率是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某學(xué)生解選擇題出錯的概率為,該生解三道選擇題至少有一道出錯的概率是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一射手對同一目標獨立地射擊四次,已知至少命中一次的概率為,則此射手每次擊中的概率是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)某氣象站天氣預(yù)報準確率為0.9,則在3次預(yù)報中恰有2次預(yù)報準確的概率為__________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

北京的高考數(shù)學(xué)試卷中共有8道選擇題,每個選擇題都給了4個選項(其中有且僅有一個選項是正確的).評分標準規(guī)定:每題只選1項,答對得5分,不答或答錯得0分.某考生每道題都給出了答案,已確定有4道題的答案是正確的,而其余的題中,有兩道題每題都可判斷其有兩個選項是錯誤的,有一道題可以判斷其一個選項是錯誤的,還有一道題因不理解題意只能亂猜.對于這8道選擇題,試求:
(Ⅰ) 該考生得分為40分的概率; 
(Ⅱ) 該考生所得分數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案