【題目】設(shè)函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若,討論當(dāng)時(shí)的零點(diǎn)的個(gè)數(shù).
【答案】(1)見解析(2)見解析
【解析】試題分析:(1)由解析式求出定義域和,化簡(jiǎn)后對(duì)進(jìn)行分類討論,根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,分別求出函數(shù)的增區(qū)間、減區(qū)間;(2)由(1)求函數(shù)的最小值,由條件列出不等式求出的范圍,對(duì)進(jìn)行分類討論,并分別判斷在區(qū)間上的單調(diào)性,求出和判斷出符號(hào),即可得結(jié)論.
試題解析:(1),
①, , , 增.
②, ,有的增區(qū)間.
,有的減區(qū)間為.
(2)①時(shí),有,在單調(diào)遞減,
, ,在上有一個(gè)零點(diǎn).
②時(shí),有,在單調(diào)遞減,
,在上沒有零點(diǎn).
③時(shí),有,在單調(diào)遞減,在單調(diào)遞增,
,在上沒有零點(diǎn).
④時(shí), ,在上單調(diào)遞增,
在上沒有零點(diǎn).
綜上所述①在上有一個(gè)零點(diǎn),
②,在上沒有零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的方程為,點(diǎn)是拋物線上到直線距離最小的點(diǎn),點(diǎn)是拋物線上異于點(diǎn)的點(diǎn),直線與直線交于點(diǎn),過點(diǎn)與軸平行的直線與拋物線交于點(diǎn).
(Ⅰ)求點(diǎn)的坐標(biāo);
(Ⅱ)證明直線恒過定點(diǎn),并求這個(gè)定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為
(1)求頻率分布圖中的值,并估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;
(2)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體中,分別為的中點(diǎn).
(1)求證:平面⊥平面;
(2)當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),是否都有平面,證明你的結(jié)論;
(3)若是的中點(diǎn),求與所成的角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)若對(duì)恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)求整數(shù)的值,使函數(shù)在區(qū)間上有零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生身高情況,某校以的比例對(duì)全校1000名學(xué)生按性別進(jìn)行分層抽樣調(diào)查,已知男女比例為,測(cè)得男生身高情況的頻率分布直方圖(如圖所示):
(1)計(jì)算所抽取的男生人數(shù),并估計(jì)男生身高的中位數(shù)(保留兩位小數(shù));
(2)從樣本中身高在之間的男生中任選2人,求至少有1人身高在之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)記的極小值為,求的最大值;
(Ⅱ)若對(duì)任意實(shí)數(shù)恒有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓,離心率為且過點(diǎn),過定點(diǎn)的動(dòng)直線與該橢圓相交于、兩點(diǎn).
(1)若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;
(2)在軸上是否存在點(diǎn),使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com