【題目】海洋藍(lán)洞是地球罕見的自然地理現(xiàn)象,被喻為“地球留給人類保留宇宙秘密的最后遺產(chǎn)”,我國擁有世界上最深的海洋藍(lán)洞,若要測(cè)量如圖所示的藍(lán)洞的口徑,兩點(diǎn)間的距離,現(xiàn)在珊瑚群島上取兩點(diǎn),,測(cè)得,,,則兩點(diǎn)的距離為___

【答案】

【解析】

ACD中求出AC,ABD中求出BC,△ABC中利用余弦定理可得結(jié)果.

解:由已知,△ACD中,∠ACD15°,∠ADC150°,

∴∠DAC=15°由正弦定理得,

BCD中,∠BDC15°,∠BCD135°,

∴∠DBC=30°,

由正弦定理,,

所以BC

ABC中,由余弦定理,

AB2AC2+BC22ACBCcosACB

解得:AB,

則兩目標(biāo)AB間的距離為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,右頂點(diǎn)為.已知,其中為原點(diǎn), 為橢圓的離心率.

1)求橢圓的方程及離心率的值;

2)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn).,且,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線 與拋物線 異于原點(diǎn)的交點(diǎn)為,且拋物線在點(diǎn)處的切線與軸交于點(diǎn),拋物線在點(diǎn)處的切線與軸交于點(diǎn),與軸交于點(diǎn).

(1)若直線與拋物線交于點(diǎn) ,且,求拋物線的方程;

(2)證明: 的面積與四邊形的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l:x-y-2=0,拋物線C:y2=2px(p>0).

(1)若直線l過拋物線C的焦點(diǎn),求拋物線C的方程;

(2)當(dāng)p=1時(shí),若拋物線C上存在關(guān)于直線l對(duì)稱的相異兩點(diǎn)P和Q.求線段PQ的中點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AC=3,BC=4,AB=5,以AB所在直線為軸,三角形面旋轉(zhuǎn)一周形成一旋轉(zhuǎn)體,求此旋轉(zhuǎn)體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,真命題的個(gè)數(shù)是  

①若“”為真命題,則“”為真命題;

②“,函數(shù)在定義域內(nèi)單調(diào)遞增”的否定;

為直線,,為兩個(gè)不同的平面,若,,則;

④“”的否定為“,”.

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)若函數(shù)上單調(diào)遞減,試求的取值范圍;

(Ⅲ)若函數(shù)的最小值為,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)

(1)求在[0,2]上的最值;

(2)如果對(duì)于任意的,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案