【題目】已知函數(shù), .
()若,求曲線在點處的切線方程.
()若,求函數(shù)的單調(diào)區(qū)間.
()若,且在區(qū)間上恒成立,求的取值范圍.
【答案】(1) (2) 單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為 (3)
【解析】試題分析:
(1)求出導函數(shù),切線方程為,化簡即得;
(2)求出導函數(shù),由不等式得增區(qū)間,由不等式得減區(qū)間;
(3)題意說明,因此求出導函數(shù), 的零點有和1,因此按與的大小進行分類討論,求得的最小值,然后由可得.
試題解析:
(), , , ,
,
∴切線方程為.
(), ,
,
令,則,
∴單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(3)時, 在區(qū)間恒成立,即,
,
令則, .
①即時, , 在,
恒成立.
②時,即,
在, ,
,即,
∴.
③時,即,
∴,
即, ,
,即, ,
∵,
∴.
④,即,
,
∴即不符合.
⑤,即,
,
,即不符合,
綜上: .
科目:高中數(shù)學 來源: 題型:
【題目】已知 分別為橢圓的左、右焦點,橢圓離心率,直線通過點,且傾斜角是45°.
(1)求橢圓的標準方程;
(2)若直線與橢圓交于兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,a,b,c分別為A,B,C所對邊,a+b=4,(2﹣cosA)tan =sinA.
(1)求邊長c的值;
(2)若E為AB的中點,求線段EC的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為,上頂點為,若直線的斜率為1,且與橢圓的另一個交點為, 的周長為.
(1)求橢圓的標準方程;
(2)過點的直線(直線的斜率不為1)與橢圓交于兩點,點在點的上方,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角梯形ABCD中,AD∥BC,∠A=90°,AB=2AD,若將△ABD沿直線BD折成△A′BD,使得A′D⊥BC,則直線A′B與平面BCD所成角的正弦值是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 向量 =(Sn , 1), =(2n﹣1, ),滿足條件 ∥ ,
(1)求數(shù)列{an}的通項公式,
(2)設函數(shù)f(x)=( )x , 數(shù)列{bn}滿足條件b1=1,f(bn+1)= .
①求數(shù)列{bn}的通項公式,
②設cn= ,求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點是坐標原點,焦點在軸的正半軸上,過焦點且斜率為的直線與拋物線交于兩點,且滿足.
(1)求拋物線的方程;
(2)已知為拋物線上一點,若點位于軸下方且,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來城市“共享單車”的投放在我國各地迅猛發(fā)展,“共享單車”為人們出行提供了很大的便利,但也給城市的管理帶來了一些困難,現(xiàn)某城市為了解人們對“共享單車”投放的認可度,對年齡段的人群隨機抽取人進行了一次“你是否贊成投放共享單車”的問卷調(diào)查,根據(jù)調(diào)查結(jié)果得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
組號 | 分組 | 贊成投放的人數(shù) | 贊成投放的人數(shù)占本組的頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 | |||
第六組 |
()求, , 的值.
()在第四、五、六組“贊成投放共享單車”的人中,用分層抽樣的方法抽取人參加“共享單車”騎車體驗活動,求第四、五、六組應分別抽取的人數(shù).
()在()中抽取的人中隨機選派人作為領(lǐng)隊,求所選派的人中第五組至少有一人的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩人同時生產(chǎn)內(nèi)徑為的一種零件,為了對兩人的生產(chǎn)質(zhì)量進行評比,從他們生產(chǎn)的零件中各抽出 5 件(單位: ) ,
甲:25.44,25.43, 25.41,25.39,25.38
乙:25.41,25.42, 25.41,25.39,25.42.
從生產(chǎn)的零件內(nèi)徑的尺寸看、誰生產(chǎn)的零件質(zhì)量較高.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com