(2013•河?xùn)|區(qū)二模)過(guò)雙曲線
x2
9
-
y2
16
=1
的右焦點(diǎn),且平行于經(jīng)過(guò)一、三象限的漸近線的直線方程是
4x-3y-20=0
4x-3y-20=0
分析:根據(jù)雙曲線方程,可得右焦點(diǎn)的坐標(biāo)為F(5,0),且經(jīng)過(guò)一、三象限的漸近線斜率為k=
4
3
.由平行直線的斜率相等,可得所求的直線方程的點(diǎn)斜式,再化成一般式即可.
解答:解:∵雙曲線的方程為
x2
9
-
y2
16
=1

∴a2=9,b2=16,得c=
a2+b2
=5
因此,該雙曲線右焦點(diǎn)的坐標(biāo)為F(5,0)
∵雙曲線
x2
9
-
y2
16
=1
的漸近線方程為y=±
4
3
x
∴雙曲線經(jīng)過(guò)一、三象限的漸近線斜率為k=
4
3

∴經(jīng)過(guò)雙曲線右焦點(diǎn),且平行于經(jīng)過(guò)一、三象限的漸近線的直線方程是y=
4
3
(x-5)
化為一般式,得4x-3y-20=0.
故答案為:4x-3y-20=0
點(diǎn)評(píng):本題給出雙曲線方程,求經(jīng)過(guò)一個(gè)焦點(diǎn)并且平行于漸近線的直線方程,考查了直線的方程、直線的位置關(guān)系和雙曲線的簡(jiǎn)單性質(zhì)等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•河?xùn)|區(qū)二模)設(shè)全集U=R,集合A={x|x≥2},B={x|0≤x<5},則集合(?UA)∩B=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•河?xùn)|區(qū)二模)已知正項(xiàng)數(shù)列{an}中,a1=6,點(diǎn)An(an,
an+1
)
在拋物線y2=x+1上;數(shù)列{bn}中,點(diǎn)Bn(n,bn)在過(guò)點(diǎn)(0,1),以方向向量為(1,2)的直線上.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;(文理共答)
(Ⅱ)若f(n)=
an,(n為奇數(shù))
bn,(n為偶數(shù))
,問(wèn)是否存在k∈N,使f(k+27)=4f(k)成立,若存在,求出k值;若不存在,說(shuō)明理由;(文理共答)
(Ⅲ)對(duì)任意正整數(shù)n,不等式
an+1
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)
-
an
n-2+an
≤0成立,求正數(shù)a的取值范圍.(只理科答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•河?xùn)|區(qū)二模)定義域R的奇函數(shù)f(x),當(dāng)x∈(-∞,0)時(shí)f(x)+xf'(x)<0恒成立,若a=3f(3),b=(logπ3)•f(logπ3),c=-2f(-2),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•河?xùn)|區(qū)二模)近年來(lái),政府提倡低碳減排,某班同學(xué)利用寒假在兩個(gè)小區(qū)逐戶調(diào)查人們的生活習(xí)慣是否符合低碳觀念.若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”.?dāng)?shù)據(jù)如下表(計(jì)算過(guò)程把頻率當(dāng)成概率).
A小區(qū) 低碳族 非低碳族
頻率 p 0.5 0.5
B小區(qū) 低碳族 非低碳族
頻率 p 0.8 0.2
(1)如果甲、乙來(lái)自A小區(qū),丙、丁來(lái)自B小區(qū),求這4人中恰有2人是低碳族的概率;
(2)A小區(qū)經(jīng)過(guò)大力宣傳,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后隨機(jī)地從A小區(qū)中任選25個(gè)人,記X表示25個(gè)人中低碳族人數(shù),求E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•河?xùn)|區(qū)二模)已知有兩個(gè)數(shù)列{an},{bn},它們的前n項(xiàng)和分別記為Sn,Tn,且數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,Sm=26,前m項(xiàng)中數(shù)值最大的項(xiàng)的值為18,S2m=728,又Tn=2n2
(I)求數(shù)列{an},{bn}的通項(xiàng)公式.
(II)若數(shù)列{cn}滿足cn=bnan,求數(shù)列{cn}的前n項(xiàng)和Pn

查看答案和解析>>

同步練習(xí)冊(cè)答案