已知曲線C:,直線l:ρ(cosθ-2sinθ)=12.
(1)將直線l的極坐標方程化為直角坐標方程;
(2)設點P在曲線C上,求P點到直線l距離的最小值.
【答案】分析:(1)先將ρ(cosθ-2sinθ)=12的左式去括號,再利用直角坐標與極坐標間的關系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換即得.
(2)先依據(jù)點P在曲線C:,設P(3cosθ,2sinθ),利用點到直線的距離列出函數(shù)式,最后求此函數(shù)的最小值即可.
解答:解:(1)∵ρ(cosθ-2sinθ)=12,
∴ρcosθ-2ρsinθ=12,
即:x-2y-12=0;
∴直線l的極坐標方程化為直角坐標方程為x-2y-12=0(4分)
(2)設P(3cosθ,2sinθ),
=
(其中,
當cos(θ+φ)=1時,,
∴P點到直線l的距離的最小值為.(10分)
點評:本題考查點的極坐標和直角坐標的互化,能在極坐標系中用極坐標刻畫點的位置,體會在極坐標系和平面直角坐標系中刻畫點的位置的區(qū)別,能進行極坐標和直角坐標的互化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2010-2011學年西藏拉薩中學高三第七次月考考試文科數(shù)學 題型:選擇題

已知曲線C:,直線l:y=2x+b,那么曲C與直線l相切的充要條件是

A.b=        B.b=-   C.b=5   D.b=或b=-

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省鹽城中學高二(下)期末數(shù)學試卷(理科)(解析版) 題型:解答題

已知曲線C:,直線l:ρ(cosθ-2sinθ)=12.
(1)將直線l的極坐標方程化為直角坐標方程;
(2)設點P在曲線C上,求P點到直線l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省揚州中學高三(上)12月質量檢測數(shù)學試卷(解析版) 題型:解答題

已知曲線C:,直線l:ρ(cosθ-2sinθ)=12.
(1)將直線l的極坐標方程化為直角坐標方程;
(2)設點P在曲線C上,求P點到直線l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年江蘇省徐州市、宿遷市高考數(shù)學三模試卷(解析版) 題型:填空題

已知曲線C:,直線l:y=x,在曲線C上有一個動點P,過點P分別作直線l和y軸的垂線,垂足分別為A,B.再過點P作曲線C的切線,分別與直線l和y軸相交于點M,N,O是坐標原點.若△ABP的面積為,則△OMN的面積為   

查看答案和解析>>

同步練習冊答案