解下列方程
(1)logx+2(4x+5)-log4x+5(x2+4x+4)-1=0;
(2)32x+5=5•3x+2+2;

解:(1)logx+2(4x+5)-log4x+5(x2+4x+4)-1=0
化為logx+2(4x+5)-2[logx+2(4x+5)]-1-1=0
令t=logx+2(4x+5)
上式化為:
當(dāng)logx+2(4x+5)=-1時解得x=-1或x=都不符合題意,舍去.
當(dāng)logx+2(4x+5)=2時有x2=1,解得x=-1(舍去),x=1
(2)32x+5=5•3x+2+2
令t=3x+2
上式化為3t2-5t-2=0解得t=-(舍去),t=2
即 3x+2=2 x+2=log32
所以x=
分析:(1)應(yīng)用對數(shù)換底公式,換元法,解一元二次方程,然后還原對數(shù)解答即可.
(2)直接換元,解一元二次方程,然后再解指數(shù)方程即可.
點(diǎn)評:本題考查對數(shù)的運(yùn)算性質(zhì),有理指數(shù)冪的運(yùn)算,考查學(xué)生換元法,轉(zhuǎn)化思想,注意方程根的驗(yàn)證,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解下列方程
(1)logx+2(4x+5)-log4x+5(x2+4x+4)-1=0;
(2)32x+5=5•3x+2+2;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列方程、不等式:
(1)4x-1-3•2x-2-1>0;
(2) logx-1(2x2-6x+4)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列方程:
(1)logx(x2-x)=logx2
(2)lo
g
2
5
x-log5x2=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)復(fù)習(xí)(第2章 函數(shù)):2.11 指數(shù)與對數(shù)運(yùn)算(解析版) 題型:解答題

解下列方程
(1)logx+2(4x+5)-log4x+5(x2+4x+4)-1=0;
(2)32x+5=5•3x+2+2;

查看答案和解析>>

同步練習(xí)冊答案