雙曲線(xiàn)x2-
y2
2
=1
的右焦點(diǎn)到準(zhǔn)線(xiàn)的距離為( 。
A、
1
8
B、
2
3
3
C、
1
2
D、1
考點(diǎn):雙曲線(xiàn)的簡(jiǎn)單性質(zhì)
專(zhuān)題:計(jì)算題,圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:求雙曲線(xiàn)右焦點(diǎn),右準(zhǔn)線(xiàn),從而可求右焦點(diǎn)到右準(zhǔn)線(xiàn)的距離.
解答: 解:雙曲線(xiàn)x2-
y2
2
=1
的右焦點(diǎn)為(
3
,0),右準(zhǔn)線(xiàn)為x=
1
3
,∴右焦點(diǎn)到右準(zhǔn)線(xiàn)的距離為
2
3
3

故選:B.
點(diǎn)評(píng):本題的考點(diǎn)是雙曲線(xiàn)的簡(jiǎn)單性質(zhì),主要考查雙曲線(xiàn)的標(biāo)準(zhǔn)方程,考查右焦點(diǎn),右準(zhǔn)線(xiàn),同時(shí)考查點(diǎn)到直線(xiàn)的距離.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|2x-1|-1,x≤1
x2-3x+3
x-1
,x>1
,下列關(guān)于函數(shù)g(x)=[f(x)]2+af(x)-1(其中a為常數(shù))的敘述中:
①對(duì)?a∈R,函數(shù)g(x)至少有一個(gè)零點(diǎn);
②當(dāng)a=0時(shí),函數(shù)g(x)有兩個(gè)不同零點(diǎn);
③?a∈R,使得函數(shù)g(x)有三個(gè)不同零點(diǎn);
④函數(shù)g(x)有四個(gè)不同零點(diǎn)的充要條件是a<0.
其中真命題有
 
.(把你認(rèn)為的真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:0<a<3,命題q:對(duì)數(shù)函數(shù)y=log2a-3x在(0,+∞)上是遞增函數(shù),如果命題“¬p或q”是假命題,那么實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={(x,y)|y=f(x)},若對(duì)于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱(chēng)集合M是“垂直對(duì)點(diǎn)集”.給出下列四個(gè)集合:
①M(fèi)={(x,y)|y=
1
x
};       
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};     
④M={(x,y)|y=ex-2}.
其中是“垂直對(duì)點(diǎn)集”的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若tan(α+β)=3,tan(α-
π
4
)=
4
3
,則tan(β+
π
4
)=(  )
A、3
B、
1
3
C、
3
4
D、-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=1,|
b
|=
2
,且向量(
a
-
b
)和
a
垂直,則
a
b
的值為( 。
A、0
B、1
C、
2
D、-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,b=2,C=60°,c=
3
,則角B的大小為( 。
A、
π
2
B、
π
6
C、
π
6
6
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}中,a5=-2,則此數(shù)列前9項(xiàng)的積為( 。
A、256B、-256
C、-512D、512

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列框圖屬于流程圖的是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案