【題目】動(dòng)點(diǎn) 與定點(diǎn) 的距離和它到定直線 的距離的比是 ∶ ,記點(diǎn) 的軌跡為 .
(1)求曲線 的方程;
(2)對(duì)于定點(diǎn) ,作過點(diǎn) 的直線 與曲線 交于不同的兩點(diǎn) , ,求△ 的內(nèi)切圓半徑的最大值.
【答案】
(1)由題意,得 ,整理得 ,
所以曲線C的方程為 .
(2)設(shè) ,又設(shè) 的內(nèi)切圓的半徑為r,
易知 為橢圓 的左、右焦點(diǎn),
所以 的周長(zhǎng)為4a=8, ,
因此 面積最大,r就最大。
.
由題意知,直線l 的斜率不為零,可設(shè)直線l 的方程為 ,
由 ,得 ,
所以, , .
又因直線l 與橢圓C 交于不同的兩點(diǎn),
所以△>0,即 ,則
,
令 ,則 ,
令 ,則 .
所以函數(shù) 在 上是單調(diào)遞增函數(shù),
即當(dāng) 時(shí), 在 上單調(diào)遞增,
因此有 ,所以
即當(dāng)t=1,m=0時(shí), 最大,此時(shí) ,
故當(dāng)直線L的方程為x=1時(shí), 內(nèi)切圓半徑的最大值為 .
【解析】本小題主要考查軌跡方程的求法、直線與橢圓的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查數(shù)形結(jié)合、轉(zhuǎn)化與化歸、分類與整合等數(shù)學(xué)思想,并考查思維的嚴(yán)謹(jǐn)性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購(gòu)進(jìn)16枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得如表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購(gòu)進(jìn)16枝玫瑰花,X表示當(dāng)天的利潤(rùn)(單位:元),求X的分布列,數(shù)學(xué)期望及方差;
(ii)若花店計(jì)劃一天購(gòu)進(jìn)16枝或17枝玫瑰花,你認(rèn)為應(yīng)購(gòu)進(jìn)16枝還是17枝?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a≠0).
(1)試討論y=f(x)的極值;
(2)若a>0,設(shè)g(x)=x2emx , 且任意的x1 , x2∈[0,2],f(x1)﹣g(x2)≥﹣1恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=2sin(2x+ )的圖象向右平移φ(φ>0)個(gè)單位,再將圖象上每一點(diǎn)的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),所得圖象關(guān)于直線x= 對(duì)稱,則φ的最小值為( )
A. π
B. π
C. π
D. π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系下,已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ﹣ )= .
(1)求圓O和直線l的直角坐標(biāo)方程;
(2)當(dāng)θ∈(0,π)時(shí),求直線l與圓O公共點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱柱 中,底面 為矩形,面 ⊥平面 , = = = , =2, 是 的中點(diǎn).
(Ⅰ)求證: ⊥ ;
(Ⅱ)求BD與平面 所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0, ),其部分圖象如圖所示. (I)求f(x)的解析式;
(II)求函數(shù) 在區(qū)間 上的最大值及相應(yīng)的x值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex(3x﹣1)﹣ax+a,其中a<1,若有且只有一個(gè)整數(shù)x0使得f(x0)≤0,則a的取值范
圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:對(duì)任意的n∈N*均有an+1=kan+3k﹣3,其中k為不等于0與1的常數(shù),若ai∈{﹣678,﹣78,﹣3,22,222,2222},i=2,3,4,5,則滿足條件的a1所有可能值的和為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com