已知某二次函數(shù)f(x)圖象過原點,且經(jīng)過(-1,-5)和(2,4)兩點,
(Ⅰ)試求f(x)函數(shù)的解析式;
(Ⅱ)判斷f(x)在區(qū)間[3,7]上的單調(diào)性,并用單調(diào)函數(shù)的定義進行證明.
分析:(Ⅰ)求f(x)函數(shù)的解析式,由于函數(shù)性質(zhì)已知故可用待定系數(shù)法設(shè)出其解析式,再代入(-1,-5)和(2,4)兩點,求參數(shù).
(Ⅱ)判斷f(x)在區(qū)間[3,7]上的單調(diào)性,并用單調(diào)函數(shù)的定義進行證明,故此題解題過程是先判斷再證明,由二次函數(shù)的性質(zhì)判斷出結(jié)果再利用定義法證明即可.
解答:解:(Ⅰ)因為f(x)過原點,設(shè)f(x)=ax
2+bx,
由題意,圖象經(jīng)過(-1,-5)和(2,4)兩點∴
解得:
f(x)=-x
2+4x
(Ⅱ)函數(shù)f(x)在[3,7]上為單調(diào)遞減函數(shù)
證明:任取x
1<x
2∈[3,7]f(x
1)-f(x
2)=(-x
12+4x
1)-(-x
22+4x
2)=(x
22-x
12)+(4x
1-4x
2)=(x
2+x
1)(x
2-x
1)+4(x
1-x
2)=(x
2-x
1)(x
2+x
1-4)x
1<x
2∈[3,7],x
2+x
1>6,x
2-x
1>0∴(x
2+x
1-4)>0∴f(x
1)-f(x
2)=(x
2-x
1)(x
2+x
1-4)>0∴f(x
1)>f(x
2),而x
1<x
2∈[3,7]∴函數(shù)f(x)在[3,7]上為單調(diào)遞減函數(shù)
點評:本題考查待定系數(shù)法求函數(shù)的解析式及利用定義證明函數(shù)的單調(diào)性,是函數(shù)中對性質(zhì)考查的基本題型,尤其是第二問要注意解題的格式,先判斷,再證明.