【題目】[選修 4-4]參數(shù)方程與極坐標(biāo)系

在平面直角坐標(biāo)系中,已知曲線 ,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系.已知直線 .

(Ⅰ)試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;

(Ⅱ)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.

[選修 4-5]不等式選講

【答案】(1) , 的參數(shù)方程為為參數(shù));(2).

【解析】試題分析:I根據(jù)極坐標(biāo)與直角坐標(biāo)互化公式可得直角坐標(biāo)方程.由曲線消參可得普通方程.II)設(shè)點(diǎn), .則求出點(diǎn)P到直線l的距離利用正弦形函數(shù)的有界性求解即可.

試題解析:(1)由題意知,直線的直角坐標(biāo)方程為: ,

∴曲線的參數(shù)方程為為參數(shù))

(2)設(shè)點(diǎn)的坐標(biāo),則點(diǎn)到直線的距離為

,

∴當(dāng)時(shí),點(diǎn),此時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A,B,C是橢圓C: (a>b>0)上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為(2,0),BC過橢圓的中心,且·=0,||=2||

(1)求橢圓C的方程;

(2)過點(diǎn)(0,t)的直線l(斜率存在)與橢圓C交于P,Q兩點(diǎn),設(shè)D為橢圓C與y軸負(fù)半軸的交點(diǎn),且||=||,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是(
A.“x<﹣1”是“x2﹣x﹣2>0”的必要不充分條件
B.“P且Q”為假,則P假且 Q假
C.命題“ax2﹣2ax+3>0恒成立”是真命題,則實(shí)數(shù)a的取值范圍是0≤a<3
D.命題“若x2﹣3x+2=0,則x=2”的否命題為“若x2﹣3x+2=0,則x≠2”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,下列說法正確的是(
A.f(x)的圖象關(guān)于直線x=﹣ 對(duì)稱
B.函數(shù)f(x)在[﹣ ,0]上單調(diào)遞增
C.f(x)的圖象關(guān)于點(diǎn)(﹣ ,0)對(duì)稱
D.將函數(shù)y=2sin(2x﹣ )的圖象向左平移 個(gè)單位得到f(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若曲線與直線相切,求實(shí)數(shù)的值;

2)記,求上的最大值;

3)當(dāng)時(shí),試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)的坐標(biāo)分別為,直線相交于點(diǎn),且它們的斜率之積.

(1)求點(diǎn)的軌跡方程;

(2)在點(diǎn)的軌跡上有一點(diǎn)且點(diǎn)軸的上方, ,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),若函數(shù)的導(dǎo)函數(shù)的圖象與軸交于, 兩點(diǎn),其橫坐標(biāo)分別為 ,線段的中點(diǎn)的橫坐標(biāo)為,且 恰為函數(shù)的零點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求曲線在點(diǎn)處的切線方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)設(shè)函數(shù).若對(duì)于任意,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4tanxsin( ﹣x)cos(x﹣ )﹣
(1)求f(x)的定義域與最小正周期;
(2)討論f(x)在區(qū)間[﹣ , ]上的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案