【題目】如圖所示,在長方體中, , , 為棱上一點,

1,求異面直線所成角的正切值;

2,求證平面.

【答案】12)見解析

【解析】試題分析:(1)線線角找平行,因為,所以(或其補(bǔ)角)是異面直線所成角,解三角形可得(2)先根據(jù)勾股數(shù)得再結(jié)合可得,最后根據(jù)線面垂直判定定理可得平面.

試題解析:解:(1),所以(或其補(bǔ)角)是異面直線所成角

長方體,

, , ,得

(2)由題意, , ,

, ,即

又由可得

平面.

點睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型.

(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.

(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.

(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象關(guān)于直線對稱.

(1)不等式對任意恒成立,求實數(shù)的最大值;

(2)設(shè)內(nèi)的實根為, ,若在區(qū)間上存在,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]D及正實數(shù)k,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱函數(shù)f(x)是k型函數(shù).給出下列說法:
①f(x)=3﹣ 不可能是k型函數(shù);
②若函數(shù)f(x)= (a≠0)是1型函數(shù),則n﹣m的最大值為 ;
③若函數(shù)f(x)=﹣ x2+x是3型函數(shù),則m=﹣4,n=0.
其中正確說法個數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=
(1)若f(x)>k的解集為{x|x<﹣3或x>﹣2},求k的值;
(2)若對任意x>0,f(x)≤t恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市對貧困家庭自主創(chuàng)業(yè)給予小額貸款補(bǔ)貼,每戶貸款額為萬元,貸款期限有個月、個月、個月、個月、個月五種,這五種貸款期限政府分別需要補(bǔ)助元、元、元、元、元,從年享受此項政策的困難戶中抽取了戶進(jìn)行了調(diào)查統(tǒng)計,選取貸款期限的頻數(shù)如下表:

貸款期限

個月

個月

個月

個月

個月

頻數(shù)

以商標(biāo)各種貸款期限的頻率作為年貧困家庭選擇各種貸款期限的概率.

(1)某小區(qū)年共有戶準(zhǔn)備享受此項政策,計算其中恰有兩戶選擇貸款期限為個月的概率;

(2)設(shè)給享受此項政策的某困難戶補(bǔ)貼為元,寫出的分布列,若預(yù)計年全市有萬戶享受此項政策,估計年該市共要補(bǔ)貼多少萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以原點為極點, 軸的正半軸為極軸,建立極坐標(biāo)系.已知點的極坐標(biāo)為,曲線的參數(shù)方程為 (為參數(shù))

(1)求點的直角坐標(biāo);化曲線的參數(shù)方程為普通方程;

(2)設(shè)為曲線上一動點,以為對角線的矩形的一邊垂直于極軸,求矩形周長的最小值,及此時點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】潮州統(tǒng)計局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分

布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在)。

(1)求居民月收入在的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這人中分層抽樣方法抽出人作進(jìn)一步分析,則月收入在的這段應(yīng)抽多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形與梯形所在的平面互相垂直, , , , 的中點, 中點.

1)求證:平面∥平面;

2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a、b、c分別是∠A、∠B、∠C的對邊長,已知a、b、c成等比數(shù)列,且a2﹣c2=ac﹣bc,
(1)求∠A的大;
(2)求 的值.

查看答案和解析>>

同步練習(xí)冊答案