(03年北京卷理)(13分)

已知函數(shù)

(Ⅰ)求的最小正周期;

(Ⅱ)求在區(qū)間上的最大值和最小值.

解析:(Ⅰ)解:因為

所以的最小正周期

(Ⅱ)解:因為,所以

時,取最大值為,

時,取最小值為-1

的最大值為1,最小值為-

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(03年北京卷理)(12分)

已知函數(shù)的定義域,判斷它的奇偶性,并求其值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(03年北京卷理)(13分)

已知動圓過定點P(1,0),且與定直線相切,點C在l上.

   (Ⅰ)求動圓圓心的軌跡M的方程;

   (Ⅱ)設(shè)過點P,且斜率為-的直線與曲線M相交于A,B兩點.

        (i)問:△ABC能否為正三角形?若能,求點C的坐標;若不能,說明理由;

        (ii)當△ABC為鈍角三角形時,求這種點C的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(03年北京卷理)(15分)

如圖,已知正三棱柱底面邊長為3,,延長線上一點,且

(1)求證:直線∥面;

(2)求二面角的大;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(03年北京卷理)已知雙曲線方程為,則以雙曲線左頂點為頂點,右焦點為焦點的拋物線方程為         

查看答案和解析>>

同步練習(xí)冊答案