如圖所示,已知是橢圓 的左、右焦點(diǎn),點(diǎn)在橢圓上,線段與圓相切于點(diǎn),且點(diǎn)為線段的中點(diǎn),則橢圓的離心率為     .

 

【答案】

【解析】

試題分析:解:記線段PF1的中點(diǎn)為M,橢圓中心為O,連接OM,PF2則有|PF2|=2|OM|,

 

故答案為

考點(diǎn):橢圓的離心率

點(diǎn)評(píng):本題考查橢圓的離心率,解題時(shí)要認(rèn)真審題,合理地進(jìn)行等價(jià)轉(zhuǎn)化,充分利用橢圓的性質(zhì)進(jìn)行解題

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知拋物線y2=2px(p>0)的焦點(diǎn)恰好是橢圓
x2
a2
+
y2
b2
=1
的右焦點(diǎn)F,且兩條曲線的交點(diǎn)連線也過(guò)焦點(diǎn)F,則該橢圓的離心率為
2
-1
2
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•懷化二模)程序框圖如圖所示,已知曲線E的方程為ax2+by2=ab(a,b∈R),若該程序輸出的結(jié)果為s,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知橢圓M:
y2
a2
+
x2
b2
=1
(a>b>0)的四個(gè)頂點(diǎn)構(gòu)成邊長(zhǎng)為5的菱形,原點(diǎn)O到直線AB的距離為
12
5
,其A(0,a),B(-b,0).直線l:x=my+n與橢圓M相交于C,D兩點(diǎn),且以CD為直徑的圓過(guò)橢圓的右頂點(diǎn)P(其中點(diǎn)C,D與點(diǎn)P不重合).
(1)求橢圓M的方程;
(2)試判斷直線l與x軸是否交于定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考零距離 二輪沖刺優(yōu)化講練 數(shù)學(xué) 題型:044

如圖所示,已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過(guò)點(diǎn)F2并垂直x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10.橢圓上不同的兩點(diǎn)A(x1,y1)、C(x2,y2)滿(mǎn)足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.

(1)

求該橢圓的方程

(2)

求弦AC中點(diǎn)的橫坐標(biāo)

(3)

設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案