精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)
等差數列的前項和為,且.
(1)數列滿足:求數列的通項公式;
(2)設求數列的前項和.

(1)
;
(2) 。

解析試題分析::(1)設等差數列的公差為,由已知
解得:   ∴                           ………3分

                          ………6分
(2)                            ………8分

                                     ………12分
考點:本題主要考查等差數列通項公式,前n項求和公式,等比數列的求和公式,分組求和法。
點評:中檔題,等差數列、等比數列是高考必考內容,特別是往往涉及通項公式、求和公式即數列的性質。在求和問題中,“分組求和法”、“裂項相消法”、“錯位相減法”等,是常常考到的內容。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知等差數列中,首項a1=1,公差d為整數,且滿足數列滿足項和為
(1)求數列的通項公式an;
(2)若S2,的等比中項,求正整數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設非常數數列{an}滿足an+2,n∈N*,其中常數α,β均為非零實數,且αβ≠0.
(1)證明:數列{an}為等差數列的充要條件是α+2β=0;
(2)已知α=1,β, a1=1,a2,求證:數列{| an1an1|} (n∈N*,n≥2)與數列{n} (n∈N*)中沒有相同數值的項.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知Sn為數列{an}的前n項和,a1=9,Sn=n2an-n2(n-1),設bn=
(1)求證:bn-bn-1="n" (n≥2,n∈N).
(2)求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分)
已知分別在射線(不含端點)上運動,,在中,角、、所對的邊分別是、、

(Ⅰ)若、、依次成等差數列,且公差為2.求的值;
(Ⅱ)若,試用表示的周長,并求周長的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)已知等差數列的前項和為,前項和為.
1)求數列的通項公式
2)設, 求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在等差數列中,,其前項和為,等比數列的各項均為正數,,公比為,且,
(Ⅰ)求;
(Ⅱ)證明:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)等比數列中,已知。(1)求數列的通項公式;(2)已知數列是等差數列,且的第2項、第4項分別相等。若數列的前項和,求的值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分) 設、是函數圖象上任意兩點,且
(Ⅰ)求的值;
(Ⅱ)若(其中),求;
(Ⅲ)在(Ⅱ)的條件下,設),若不等式對任意的正整數n恒成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案