【題目】已知橢圓方程為.
(1)設(shè)橢圓的左右焦點(diǎn)分別為、,點(diǎn)在橢圓上運(yùn)動(dòng),求的值;
(2)設(shè)直線和圓相切,和橢圓交于、兩點(diǎn),為原點(diǎn),線段、分別和圓交于、兩點(diǎn),設(shè)、的面積分別為、,求的取值范圍.
【答案】(1);(2).
【解析】
(1)設(shè)點(diǎn),由該點(diǎn)在橢圓上得出,然后利用距離公式和向量數(shù)量積的坐標(biāo)運(yùn)算求出的值;
(2)分直線的斜率不存在與存在兩種情況討論,在直線的斜率不存在時(shí),可求得,在直線的斜率存在時(shí),設(shè)直線的方程為,設(shè)點(diǎn)、,根據(jù)直線與圓相切,得出,并將直線的方程與橢圓方程聯(lián)立,列出韋達(dá)定理,將表示為的函數(shù),轉(zhuǎn)化為函數(shù)的值域的求解,綜合可得出答案.
(1)由已知,,設(shè),
由,
同理,可得,
.
結(jié)合,得,故;
(2)當(dāng)直線l的斜率不存在時(shí),其方程為,
由對稱性,不妨設(shè),此時(shí),故.
若直線的斜率存在,設(shè)其方程為,
由已知可得,則,
設(shè)、,將直線與橢圓方程聯(lián)立,
得,
由韋達(dá)定理得,.
結(jié)合及,
可知.
將根與系數(shù)的關(guān)系代入整理得:
,
結(jié)合,得.
設(shè),,
則.
的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,設(shè)函數(shù),.
(1)試討論的單調(diào)性;
(2)設(shè)函數(shù),是否存在實(shí)數(shù),使得存在兩個(gè)極值點(diǎn),,且滿足?若存在,求的取值范圍;若不存在,請說明理由.
注:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中盈不足章中有這樣一則故事:“今有良馬與駑馬發(fā)長安,至齊. 齊去長安三千里. 良馬初日行一百九十三里,日增一十二里;駑馬初日行九十七里,日減二里.” 為了計(jì)算每天良馬和駑馬所走的路程之和,設(shè)計(jì)框圖如下圖. 若輸出的 的值為 350,則判斷框中可填( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知定點(diǎn),點(diǎn)A在x軸的非正半軸上運(yùn)動(dòng),點(diǎn)B在y軸上運(yùn)動(dòng),滿足,A關(guān)于點(diǎn)B的對稱點(diǎn)為M,設(shè)點(diǎn)M的軌跡為曲線C.
(1)求C的方程;
(2)已知點(diǎn),動(dòng)直線與C相交于P,Q兩點(diǎn),求過G,P,Q三點(diǎn)的圓在直線上截得的弦長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)多面體的直觀圖及三視圖如圖所示,其中M ,N 分別是AF、BC 的中點(diǎn)
(1)求證:MN∥平面CDEF;
(2)求多面體A-CDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線過點(diǎn)
(1)求拋物線的方程,并求其焦點(diǎn)坐標(biāo)與準(zhǔn)線方程;
(2)直線與拋物線交于不同的兩點(diǎn),過點(diǎn)作軸的垂線分別與直線,交于,兩點(diǎn),其中為坐標(biāo)原點(diǎn).若為線段的中點(diǎn),求證:直線恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)動(dòng)點(diǎn)與點(diǎn),連線的斜率之積為.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過點(diǎn)的直線與曲線交于,兩點(diǎn),直線,與直線分別交于,兩點(diǎn).求證:以為直徑的圓恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若,方程的實(shí)根個(gè)數(shù)不少于2個(gè),證明:
(2)若在,處導(dǎo)數(shù)相等,求的取值范圍,使得對任意的,,恒有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:x2+y2=3,直線PA與圓O相切于點(diǎn)A,直線PB垂直y軸于點(diǎn)B,且|PB|=2|PA|.
(1)求點(diǎn)P的軌跡E的方程;
(2)過點(diǎn)(1,0)且與x軸不重合的直線與軌跡E相交于P,Q兩點(diǎn),在x軸上是否存在定點(diǎn)D,使得x軸是∠PDQ的角平分線,若存在,求出D點(diǎn)坐標(biāo),若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com