【題目】若函數(shù) , ,對于給定的非零實(shí)數(shù) ,總存在非零常數(shù) ,使得定義域 內(nèi)的任意實(shí)數(shù) ,都有 恒成立,此時 的類周期,函數(shù) 上的 級類周期函數(shù).若函數(shù) 是定義在區(qū)間 內(nèi)的2級類周期函數(shù),且 ,當(dāng) 時, 函數(shù) .若 , ,使 成立,則實(shí)數(shù) 的取值范圍是( )
A.
B.
C.
D.

【答案】B
【解析】 是定義在區(qū)間 內(nèi)的 級類周期函數(shù),且 , 當(dāng) 時, ,故 時, 時, ,而 當(dāng) 時, , ,當(dāng) 時, 在區(qū)間 上單調(diào)遞減,當(dāng) 時, 在區(qū)間 上單調(diào)遞增,故 ,依題意得 ,即 實(shí)數(shù) 的取值范圍是 .
故答案為:B.對于新定義a 級類周期函數(shù),要弄清含義,對于兩個函數(shù)f(x),g(x)的不等式,也就是說g(x)的最小值要比f(x)的最大值要小于或等于,再求m的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地一年的氣溫Q(t)(單位:℃)與時間t(月份)之間的關(guān)系如圖所示,已知該年的平均氣溫為10 ℃,令C(t)表示時間段[0,t]的平均氣溫,下列四個函數(shù)圖象中,最能表示C(t)與t之間的函數(shù)關(guān)系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若x,y滿足約束條件 則z=y(tǒng)-x的取值范圍為( )
A.[-2,2]
B.
C.[-1,2]
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x<1},B={x|3x<1},則( 。
A.A∩B={x|x<0}
B.A∪B=R
C.A∪B={x|x>1}
D.A∩B=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為對考生的月考成績進(jìn)行分析,某地區(qū)隨機(jī)抽查了 名考生的成績,根據(jù)所得數(shù)據(jù)畫了如下的樣本頻率分布直方圖.

(1)求成績在 的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析成績與班級、學(xué)校等方面的關(guān)系,必須按成績再從這 人中用分層抽樣方法抽取出 人作出進(jìn)一步分析,則成績在 的這段應(yīng)抽多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系 中,圓 的參數(shù)方程為 為參數(shù), 是大于0的常數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓 的極坐標(biāo)方程為
(1)求圓 的極坐標(biāo)方程和圓 的直角坐標(biāo)方程;
(2)分別記直線 , 與圓 、圓 的異于原點(diǎn)的焦點(diǎn)為 , ,若圓 與圓 外切,試求實(shí)數(shù) 的值及線段 的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x0是f(x)= 的一個零點(diǎn),x1∈(-∞,x0),x2∈(x0,0),則( )
A.f(x1)<0,f(x2)<0
B.f(x1)>0,f(x2)>0
C.f(x1)>0,f(x2)<0
D.f(x1)<0,f(x2)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 , ,函數(shù) 的最小值為4.
(1)求 的值;
(2)求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)為奇函數(shù)的是( )
A.y=x3+3x2
B.y=
C.y=xsin x
D.y=

查看答案和解析>>

同步練習(xí)冊答案