【題目】已知函數(shù)

(1)求函數(shù)的定義域,判斷并證明的奇偶性;

(2)判斷函數(shù)的單調(diào)性;

(3)解不等式.

【答案】(1)是定義在上的奇函數(shù);(2)在其定義域上是增函數(shù);(3).

【解析】試題分析:1化簡函數(shù)的即解析式為,求得函數(shù)的定義域為再根據(jù),可得函數(shù)是定義在上的奇函數(shù);(2利用作差證明即可;(3)先判斷函數(shù)的奇偶性,根據(jù)函數(shù)的奇偶性、單調(diào)性、得到關于 的不等式,解不等式即可得結果.

試題解析:(1) ∵,∴ ,∴的定義域為.

的定義域為,

,

, 

是定義在上的奇函數(shù).

(2) 任取,且,則

,

,∴

,又 ,

,∴,

∴函數(shù)在其定義域上是增函數(shù).

(3) 由.

∵函數(shù)為奇函數(shù),

,∴

由(2)題已知函數(shù)上是增函數(shù).

,∴

∴不等式的解集為.

【方法點晴】本題主要考查函數(shù)的定義域、函數(shù)的單調(diào)性的應用,屬于難題.根據(jù)函數(shù)的單調(diào)性解不等式應注意以下三點:(1)一定注意函數(shù)的定義域(這一點是同學們?nèi)菀资韬龅牡胤,不等掉以輕心);(2)注意應用函數(shù)的奇偶性(往往需要先證明是奇函數(shù)還是偶函數(shù));(3)化成 后再利用單調(diào)性和定義域列不等式組.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,定點為圓上一動點,線段的垂直平分線交線段于點,設點的軌跡為曲線;

(Ⅰ)求曲線的方程;

(Ⅱ)若經(jīng)過的直線交曲線于不同的兩點,(點在點, 之間),且滿足,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ax,(a∈R)
(1)若函數(shù)f(x)在點(1,f(1))處切線方程為y=3x+b,求a,b的值;
(2)當a>0時,求函數(shù)f(x)在[1,2]上的最小值;
(3)設g(x)=x2﹣2x+2,若對任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學擬在高一下學期開設游泳選修課,為了了解高一學生喜歡游泳是否與性別有關,現(xiàn)從高一學生中抽取人做調(diào)查,得到如下列聯(lián)表:

已知在這人中隨機抽取一人抽到喜歡游泳的學生的概率為,

(Ⅰ)請將上述列聯(lián)表補充完整,并判斷是否有%的把握認為喜歡游泳與性別有關?并說明你的理由;

(Ⅱ)針對問卷調(diào)查的名學生,學校決定從喜歡游泳的人中按分層抽樣的方法隨機抽取人成立游泳科普知識宣傳組,并在這人中任選兩人作為宣傳組的組長,求這兩人中至少有一名女生的概率,參考公式: ,其中.參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an},滿足d>0,且a1+a2+a3=9,a1a3=5
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足bn= ,Sn為數(shù)列{bn}的前n項和,證明:Sn<3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓錐曲線C的極坐標方程為ρ2= ,F(xiàn)1是圓錐曲線C的左焦點.直線l: (t為參數(shù)).
(1)求圓錐曲線C的直角坐標方程和直線l的直角坐標方程;
(2)若直線l與圓錐曲線C交于M,N兩點,求|F1M|+|F1N|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓心在直線2x-3y-1=0上的圓與x軸交于A(1,0),B(3,0)兩點,則圓的方程為( )
A.(x-2)2+(y+1)2=2
B.(x+2)2+(y-1)2=2
C.(x-1)2+(y-2)2=2
D.(x-2)2+(y-1)2=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,求曲線在點處的切線;

(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實數(shù)的取值范圍;

(3)設函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線y2=4x和點M(6,0),O為坐標原點,直線l過點M,且與拋物線交于A,B兩點.
(1)求 ;
(2)若△OAB的面積等于12 ,求直線l的方程.

查看答案和解析>>

同步練習冊答案