設(shè)圓滿足:(1)y軸所得弦長(zhǎng)為2(2)x軸分成兩段圓弧,其弧長(zhǎng)的比為31,在滿足條件(1)、(2)的所有圓中,求圓心到直線lx2y=0的距離最小的圓的方程.

 

答案:
解析:

設(shè)圓的圓心為Pa,b)半徑為r,則點(diǎn)Px軸,y軸的距離分別為. 由題設(shè)知圓Px軸所得劣弧對(duì)的圓心角為90º,知圓Px軸所得的弦長(zhǎng)為r,故r2=2b2.又圓截y軸所得的弦長(zhǎng)為2,所以有r2=a2+1,從而得2b2a2=1.

點(diǎn)P(ab)到直線x2y=0的距離為

  當(dāng)且僅當(dāng)a=b時(shí)上式等號(hào)成立,此時(shí)5d2=1,從而d取最小值,

  由此有,

  解此方程組得

  由于r2=2b2r=

  于是,所求圓的方程是 (x1)2+(y1)2=2(x+1)2+(y1)2=2.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

設(shè)圓滿足:(1)y軸所得弦長(zhǎng)為2;(2)x軸分成兩段圓弧,其弧長(zhǎng)的比為31,在滿足條件(1)(2)的所有圓中,求圓心到直線lx2y=0的距離最小的圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

設(shè)圓滿足:(1)y軸所得弦長(zhǎng)為2(2)x軸分成兩段圓弧,其弧長(zhǎng)的比為31.在滿足(1)(2)的所有圓中,求圓心到lx2y=0的距離最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

設(shè)圓滿足:(1)截y軸所得弦長(zhǎng)為2;(2)被x軸分成兩段圓弧,其弧長(zhǎng)的比為3∶1.在滿足(1)(2)的所有圓中,求圓心到l∶x-2y=0的距離最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓滿足:

(1)截y軸所得弦長(zhǎng)為2;

(2)被x軸分成兩段圓弧,其弧長(zhǎng)的比為3∶1.

在滿足條件(1)、(2)的所有圓中,求圓心到直線l:x-2y=0的距離最小的圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案