(本小題滿分10分)
如圖,在四棱錐中,底面ABCD為直角梯形,AB∥CD,∠BAD=90°,PA⊥平面ABCD,AB=1,AD=2,PA=CD=4,求二面角的余弦值.
二面角B-PC-A的余弦值為.
本小題采用向量法求二面角,先求出二面角兩個面的法向量,再求法向量的夾角,再根據(jù)法向量的夾角與二面角相等或互補來求解.
解:如圖建立空間直角坐標系,則A(0,0,0),B(0,1,0),C(-2,4,0),D(-2,0,0),P(0,0,4),易證為面PAC的法向量,則

設面PBC的法向量,
,
所以
所以面PBC的法向量

因為面PAC和面PBC所成的角為銳角,所以二面角B-PC-A的余弦值為.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,已知三棱柱的側棱與底面垂直,,,分別是的中點,點在直線上,且;
(1)證明:無論取何值,總有;
(2)當取何值時,直線與平面所成的角最大?并求該角取最大值時的正切值;
(3)是否存在點,使得平面與平面所成的二面角為30º,若存在,試確定點的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐S—ABC中,SC⊥平面ABC,點P、M分別是SC和SB的中點,設
PM=AC=1,∠ACB=90°,直線AM與直線SC所成的角為60°.
(I)求證:;(Ⅱ)求證:平面MAP⊥平面SAC;
( Ⅲ)求銳二面角M—AB—C的大小的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共12分)
如圖,已知四棱錐中,底面,四邊形是直角梯形,,

(1)證明:;
(2)在線段上找出一點,使平面,
指出點的位置并加以證明;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,三棱柱ABC—A1B1C1中,底面為正三角形,側棱與底面垂直,D是BC的中點,AA1=AB=1。

(1)  求證:A1C∥平面AB1D;
(2)  求點C到平面AB1D的距離。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

矩形中,⊥面,,上的點,且⊥面,、交于點.
(1)求證:;
(2)求證://面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

類比平面幾何中的定理 “設是三條直線,若,則”,得出如下結論:
①設是空間的三條直線,若,則;
②設是兩條直線,是平面,若,則;
③設是兩個平面,是直線,若;
④設是三個平面,若,則
其中正確命題的個數(shù)是(    )  
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2,∠ACB=900,M是AA1的中點,N是BC1的中點.

(1)求證:MN//平面A1B1C1
(2)求二面角B-C1M-C的平面角余弦值的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知平面和直線l,則內(nèi)至少有一條直線與l(   )
A.平行B.相交C.垂直D.異面

查看答案和解析>>

同步練習冊答案