橢圓的左右焦點(diǎn)分別為F1,F(xiàn)2,若橢圓C上恰好有6個(gè)不同的點(diǎn)P,使得△F1F2P為等腰三角形,則橢圓C的離心率的取值范圍是( )
A.
B.
C.
D.
【答案】分析:分等腰三角形△F1F2P以F1F2為底和以F1F2為一腰兩種情況進(jìn)行討論,結(jié)合以橢圓焦點(diǎn)為圓心半徑為2c的圓與橢圓位置關(guān)系的判斷,建立關(guān)于a、c的不等式,解之即可得到橢圓C的離心率的取值范圍.
解答:解:①當(dāng)點(diǎn)P與短軸的頂點(diǎn)重合時(shí),
△F1F2P構(gòu)成以F1F2為底邊的等腰三角形,
此種情況有2個(gè)滿足條件的等腰△F1F2P;
②當(dāng)△F1F2P構(gòu)成以F1F2為一腰的等腰三角形時(shí),
以F2P作為等腰三角形的底邊為例,
∵F1F2=F1P,
∴點(diǎn)P在以F1為圓心,半徑為焦距2c的圓上
因此,當(dāng)以F1為圓心,半徑為2c的圓與橢圓C有2交點(diǎn)時(shí),
存在2個(gè)滿足條件的等腰△F1F2P,
此時(shí)a-c<2c,解得a<3c,所以離心率e
當(dāng)e=時(shí),△F1F2P是等邊三角形,與①中的三角形重復(fù),故e≠
同理,當(dāng)F1P為等腰三角形的底邊時(shí),在e且e≠時(shí)也存在2個(gè)滿足條件的等腰△F1F2P
這樣,總共有6個(gè)不同的點(diǎn)P使得△F1F2P為等腰三角形
綜上所述,離心率的取值范圍是:e∈(,)∪(,1)
點(diǎn)評:本題給出橢圓的焦點(diǎn)三角形中,共有6個(gè)不同點(diǎn)P使得△F1F2P為等腰三角形,求橢圓離心率e的取值范圍.著重考查了橢圓的標(biāo)準(zhǔn)方程和簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(0,一2),橢圓c:
x2
a2
+
y2
b2
=1
(a>b>0),橢圓的左右焦點(diǎn)分別為F1、F2,若三角形PF1F2的面積為2,且a2,b2的等比中項(xiàng)為6
2

(1)求橢圓的方程;
(2)若橢圓上有A、B兩點(diǎn),使△PAB的重心為F1,求直線AB的方程;
(3)在(2)的條件下,設(shè)M為橢圓上一動(dòng)點(diǎn),求△MAB的面積的最大值及此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶模擬)已知焦點(diǎn)在x軸上的橢圓的左右焦點(diǎn)分別為F1、F2,橢圓的一個(gè)頂點(diǎn)恰好是拋物線x2=4y的焦點(diǎn),點(diǎn)P是橢圓上一動(dòng)點(diǎn)且△F1F2P的面積最大值為2.
(Ⅰ)求橢圓方程;
(Ⅱ)過橢圓的右焦點(diǎn)F2作與坐標(biāo)軸不垂直的直線交橢圓于A,B兩點(diǎn),點(diǎn)M(m,0)是x軸上不同于原點(diǎn)的一個(gè)動(dòng)點(diǎn),求滿足條件(
MA
+
MB
)⊥
AB
的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東省“十!备呷谝淮温(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的左右焦點(diǎn)分別為,且經(jīng)過點(diǎn),為橢圓上的動(dòng)點(diǎn),以為圓心,為半徑作圓.

(1)求橢圓的方程;

(2)若圓軸有兩個(gè)交點(diǎn),求點(diǎn)橫坐標(biāo)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年黑龍江省哈爾濱市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:選擇題

橢圓的左右焦點(diǎn)分別為,弦,若的內(nèi)切圓周長為,兩點(diǎn)的坐標(biāo)分別為,則值為(  )

A.                B.           C.           D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)高三第二次模擬考試數(shù)學(xué)(文) 題型:解答題

(本題滿分13分)
已知橢圓的左右焦點(diǎn)分別.在橢圓中有一內(nèi)接三角形,其頂點(diǎn)的坐標(biāo),所在直線的斜率為
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)的面積最大時(shí),求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案