已知數(shù)列滿足:,其中.
(1)求證:數(shù)列是等比數(shù)列;
(2)令,求數(shù)列的最大項(xiàng).
(1)詳見解析;(2)最大項(xiàng)為.
解析試題分析:(1)首先根據(jù)已知等式,令,可得,再根據(jù)已知等式可得,將兩式相減,即可得到數(shù)列的一個(gè)遞推公式,只需驗(yàn)證將此遞推公式變形得到形如的形式,從可證明數(shù)列是等比數(shù)列;(2)由(1)可得,從而,因此要求數(shù)列的最大項(xiàng),可以通過利用作差法判斷數(shù)列的單調(diào)性來求得: ,
當(dāng)時(shí),,即;當(dāng)時(shí),; 當(dāng)時(shí),,即,因此數(shù)列的最大項(xiàng)為.
試題解析:(1)當(dāng)時(shí),,∴, 1分
又∵, 2分
∴,即,∴. 4分
又∵,∴數(shù)列是首項(xiàng)為,公比為的等比數(shù)列; 6分
(2)由(1)知,,
∴, ∴ , 8分
當(dāng)時(shí),,即, 9分
當(dāng)時(shí),, 10分
當(dāng)時(shí),,即, 11分
∴數(shù)列的最大項(xiàng)為, 13分
考點(diǎn):1.數(shù)列的通項(xiàng)公式;2.數(shù)列的單調(diào)性判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
設(shè)數(shù)列是首相大于零的等比數(shù)列,則“”是“數(shù)列是遞增數(shù)列”的_____條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半輻為極軸建立極坐標(biāo)系,已知曲線,過點(diǎn)P(-2,-4)的直線 的參數(shù)方程為:(t為參數(shù)),直線與曲線C相交于M,N兩點(diǎn).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若成等比數(shù)列,求a的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)正數(shù)數(shù)列為等比數(shù)列,,記.
(1)求和;
(2)證明: 對(duì)任意的,有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù).若對(duì)任意的n∈N*,存在k∈N*,使得=an·an+2k成立,則稱數(shù)列{an}為“Jk型”數(shù)列.
(1)若數(shù)列{an}是“J2型”數(shù)列,且a2=8,a8=1,求a2n;
(2)若數(shù)列{an}既是“J3型”數(shù)列,又是“J4型”數(shù)列,證明:數(shù)列{an}是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)(2011•重慶)設(shè){an}是公比為正數(shù)的等比數(shù)列a1=2,a3=a2+4.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列滿足,.
(1)求數(shù)列的通項(xiàng);
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com