【題目】平面直角坐標(biāo)系xOy中,F(xiàn)(-1, 0)是橢圓的左焦點(diǎn),過點(diǎn)F且方向向量為的光線,經(jīng)直線反射后通過左頂點(diǎn)D.

(I)求橢圓的方程;

(II)過點(diǎn)F作斜率為的直線交橢圓于A, B兩點(diǎn),M為AB的中點(diǎn),直線OM (0為原點(diǎn))與直線交于點(diǎn)P,若滿足,求的值.

【答案】(Ⅰ)(Ⅱ)

【解析】試題分析:Ⅰ)由關(guān)于對(duì)稱得到點(diǎn), 在光線直線方程上, 的斜率為,解方程即可;

,直線,與橢圓聯(lián)立得,利用韋達(dá)定理即中點(diǎn)坐標(biāo)公式得,求得,由垂直得斜率乘積為-1,進(jìn)而得解.

試題解析:

關(guān)于對(duì)稱得到點(diǎn) 在光線直線方程上,

的斜率為 ,

∴橢圓的方程為

,得,直線

聯(lián)立

,

設(shè),則所以,即,

所以 , , ,

直線與直線垂直 ,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018山西太原市高三3月模擬已知橢圓的左、右頂點(diǎn)分別為,右焦點(diǎn)為,點(diǎn)在橢圓上.

I求橢圓方程;

II若直線與橢圓交于兩點(diǎn),已知直線相交于點(diǎn),證明:點(diǎn)在定直線上,并求出定直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),求證:函數(shù)有兩個(gè)不相等的零點(diǎn) ,且.

【答案】(1)見解析;(2)見解析

【解析】試題分析:(1)討論函數(shù)單調(diào)區(qū)間即解導(dǎo)數(shù)大于零求得增區(qū)間,導(dǎo)數(shù)小于零求得減區(qū)間(2)函數(shù)有兩個(gè)不同的零點(diǎn),先分析函數(shù)單調(diào)性得零點(diǎn)所在的區(qū)間, 上單調(diào)遞增,在上單調(diào)遞減.∵, , ,∴函數(shù)有兩個(gè)不同的零點(diǎn),且一個(gè)在內(nèi),另一個(gè)在內(nèi).

不妨設(shè) ,要證,即證 上是增函數(shù),故,且,即證. 由,得 ,

, ,得上單調(diào)遞減,∴,且∴, ,∴,即∴,故得證

解析:(1)當(dāng)時(shí), ,得,

,得.

當(dāng)時(shí), ,所以,故上單調(diào)遞減;

當(dāng)時(shí), ,所以,故上單調(diào)遞增;

當(dāng)時(shí), ,所以,故上單調(diào)遞減;

所以 上單調(diào)遞減,在上單調(diào)遞增.

(2)證明:由題意得,其中,

,由,

所以上單調(diào)遞增,在上單調(diào)遞減.

,

∴函數(shù)有兩個(gè)不同的零點(diǎn),且一個(gè)在內(nèi),另一個(gè)在內(nèi).

不妨設(shè), ,

要證,即證,

因?yàn)?/span>,且上是增函數(shù),

所以,且,即證.

,得 ,

,

.

,∴,

時(shí), ,即上單調(diào)遞減,

,且∴,

,即∴,故得證.

型】解答
結(jié)束】
22

【題目】已知曲線的參數(shù)方程為為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,設(shè)直線的極坐標(biāo)方程為.

(1)求曲線和直線的普通方程;

(2)設(shè)為曲線上任意一點(diǎn),求點(diǎn)到直線的距離的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),是常數(shù).

(Ⅰ)求曲線在點(diǎn)處的切線方程,并證明對(duì)任意,切線經(jīng)過定點(diǎn);

(Ⅱ)當(dāng)時(shí),設(shè)的兩個(gè)正的零點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017安徽蚌埠一模)已知橢圓C:=1(a>b>0)的離心率為,F1,F2是橢圓的兩個(gè)焦點(diǎn),P是橢圓上任意一點(diǎn),且△PF1F2的周長(zhǎng)是8+2.

(1)求橢圓C的方程;

(2)設(shè)圓T:(x-2)2+y2=,過橢圓的上頂點(diǎn)M作圓T的兩條切線交橢圓于E,F兩點(diǎn),求直線EF的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)若交于兩點(diǎn),點(diǎn)的極坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購(gòu)買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,且保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和費(fèi)率浮動(dòng)比率表

浮動(dòng)因素

浮動(dòng)比率

A1

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

A2

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮20%

A3

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

A4

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

A5

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

A6

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

(1)求一輛普通6座以下私家車在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購(gòu)進(jìn)一輛事故車虧損5 000元,一輛非事故車盈利10 000元.且各種投保類型的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問題:

①若該銷售商店內(nèi)有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機(jī)挑選2輛車,求這2輛車恰好有一輛為事故車的概率;

②若該銷售商一次購(gòu)進(jìn)120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高三年級(jí)有學(xué)生750人,其中男生450人,女生300人,為了研究學(xué)生的數(shù)學(xué)成績(jī)是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按性別分別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成5組,分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

(1)從樣本中分?jǐn)?shù)小于110分的學(xué)生中隨機(jī)抽取兩人,求兩人性別相同的概率;

(2)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,試判斷能否在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)當(dāng)m=5時(shí),求f(x)>0的解集;

(2)若關(guān)于的不等式f(x)≥2的解集是R,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案