提高穿山隧道的車輛通行能力可有效改善交通狀況,在一般情況下,隧道內(nèi)的車流速度v(單位:千米、小時)是車流密度x(單位:輛/千米,車流密度指每千米道路上車輛的數(shù)量)的函數(shù).當隧道內(nèi)的車流密度達到210輛/千米時,將造成堵塞,此時車流速度為0;當車流密度不超過30輛/千米時,車流速度為60千米/小時,研究表明:當30≤x≤210時,車流速度v是車流密度x的一次函數(shù).
(Ⅰ)當0≤x≤210時,求函數(shù)v(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內(nèi)通過某觀測點的車輛數(shù),單位:輛/小時)f(x)=x•v(x)可以達到最大,并求出最大值.
考點:函數(shù)模型的選擇與應用
專題:應用題,函數(shù)的性質(zhì)及應用
分析:(I)根據(jù)題意,函數(shù)v(x)表達式為分段函數(shù)的形式,關鍵在于求函數(shù)v(x)在60≤x≤600時的表達式,根據(jù)一次函數(shù)表達式的形式,用待定系數(shù)法可求得;
(II)由(Ⅰ)可知f(x)=
60x,0≤x≤30
-
1
3
x2+70x,30≤x≤210
,分段求最值,即可得出結(jié)論.
解答: 解:(Ⅰ)由題意知,當0≤x≤30時,v(x)=60;
當30≤x≤210時,設v(x)=ax+b,
由已知可得
30a+b=60
210a+b=0
,解得
a=-
1
3
b=70

所以函數(shù)v(x)=
60,0≤x≤30
-
1
3
x+70,30≤x≤210
.…(6分)
(Ⅱ)由(Ⅰ)可知f(x)=
60x,0≤x≤30
-
1
3
x2+70x,30≤x≤210

當0≤x≤30時,f(x)=60x為增函數(shù),
∴當x=30時,其最大值為1800.…(9分)
當30≤x≤210時,f(x)=-
1
3
x2+70x=-
1
3
(x-105)2+3675
,
當x=105時,其最大值為3675.…(11分)
綜上,當車流密度為105輛/千米時,車流量最大,最大值為3675輛.…(12分)
點評:本題給出車流密度的實際問題,求車流量的最大值及相應的車流密度,著重考查了函數(shù)、最值等基礎知識,同時考查運用數(shù)學知識解決實際問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知a2+b2-c2=ab,2cosAsinB=sinC,請確定△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設點P(x0,y0)在直線Ax+By+C=0上,求證:這條直線的方程可以寫成A(x-x0)+B(y-y0)=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=4cosx-e|x|(e為自然對數(shù)的底數(shù))的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠有一容量為10噸的水池,水池中有進水管和出水管各一個,某天早晨同時打開進水管和出水管閥門,開始時池中蓄滿了水,設經(jīng)過x(小時)進水量P(噸)和出水量Q(噸)分別為P=2x,Q=8
x

(1)問經(jīng)過多少小時,水池中的蓄水量y(噸)最?并求出最小量.
(2)為防止水池中的水溢出,當水池再次蓄滿水時,應關閉進水管閥門,問經(jīng)過多少小時應關閉進水管閥門?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠生產(chǎn)某種產(chǎn)品,每日的成本C(單位:萬元)與日產(chǎn)量x(單位:噸)滿足函數(shù)關系式C=3+x,每日的銷售額S(單位:萬元)與日產(chǎn)量工的函數(shù)關系式 S=
2x+
k
x-8
+7,0<x<6
14,x≥6
已知每日的利潤L=S-C,且當x=2時,L=
9
2

(1)求k的值;
(2)當日產(chǎn)量為多少噸時,每日的利潤可以達到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當x∈(0,
π
2
)時,試比較tanx與x+
x3
3
的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對任意x,y∈R,函數(shù)f(x)都滿足f(x+y)=f(x)+f(y)+2恒成立,則f(5)+f(-5)等于( 。
A、0B、-4C、-2D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知矩陣A的逆矩陣A-1=
-
1
4
3
4
1
2
-
1
2
,求矩陣A的特征值以及屬于每個特征值的一個特征向量.

查看答案和解析>>

同步練習冊答案