【題目】某大學專業(yè)有數(shù)學分析、解析幾何、高等代數(shù)三個科目的選修課,甲、乙兩位同學各隨機選擇兩科,則數(shù)學分析至少被一位同學選中的概率為________.
【答案】
【解析】
將數(shù)學分析、解析幾何、高等代數(shù)進行編號,列出甲、乙兩位同學取兩科的所有基本事件,計算滿足條件的基本事件個數(shù),按古典概型求概率,即可求出結(jié)論.
有數(shù)學分析、解析幾何、高等代數(shù)三個科目的選修課,
甲、乙兩位同學各隨機選擇兩科,設數(shù)學分析、
解析幾何、高等代數(shù)分別為1、2、3.
包含的基本事件有:(甲選12,乙選12)
(甲選12,乙選13)(甲選12,乙選23)
(甲選13,乙選12)(甲選13,乙選13)
(甲選13,乙選23)(甲選23,乙選12)
(甲選23,乙選13)(甲選23,乙選23)共九種,
則數(shù)學分析至少被一位同學選中的概率為.
故答案為:.
科目:高中數(shù)學 來源: 題型:
【題目】2018年10月28日,重慶公交車墜江事件震驚全國,也引發(fā)了廣大群眾的思考——如何做一個文明的乘客.全國各地大部分社區(qū)組織居民學習了文明乘車規(guī)范.社區(qū)委員會針對居民的學習結(jié)果進行了相關的問卷調(diào)查,并將得到的分數(shù)整理成如圖所示的統(tǒng)計圖.
(1)求得分在上的頻率;
(2)求社區(qū)居民問卷調(diào)查的平均得分的估計值;(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)
(3)由于部分居民認為此項學習不具有必要性,社區(qū)委員會對社區(qū)居民的學習態(tài)度作調(diào)查,所得結(jié)果統(tǒng)計如下:(表中數(shù)據(jù)單位:人)
認為此項學習十分必要 | 認為此項學習不必要 | |
50歲以上 | 400 | 600 |
50歲及50歲以下 | 800 | 200 |
根據(jù)上述數(shù)據(jù),計算是否有的把握認為居民的學習態(tài)度與年齡相關.
附:,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知p:x2-6x+5≤0,q:x2-2x+1-m2≤0(m>0).
(1)若m=2,且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q的充分不必要條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩條直線l1:y=m 和l2:y(m>0),直線l1與函數(shù)y=|log2x|的圖象從左至右相交于點A,B,直線l2與函數(shù)y=|log2x|的圖象從左至右相交于C,D.記線段AC和BD在X軸上的投影長度分別為a 和b.當m變化時,的最小值為()
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】運貨卡車以每小時千米的速度勻速行駛千米,按交通法規(guī)則限制(單位:千米/小時),假設汽油的價格是每升元,而汽車每小時耗油升,司機工資是每小時元.
(1)求這次行車總費用關于的表達式;
(2)當為何值時,這次行車的總費用最低,并求出最低費用的值.(精確到)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex+e-x,g(x)=2x+ax3,a為實常數(shù).
(1)求g(x)的單調(diào)區(qū)間;
(2)當a=-1時,證明:存在x0∈(0,1),使得y=f(x)和y=g(x)的圖象在x=x0處的切線互相平行.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,質(zhì)量測試分為:指標不小于90為一等品,不小于80小于90為二等品,小于80為三等品,每件一等品盈利50元,每件二等品盈利30元,每件三等品虧損10元,現(xiàn)對學徒工甲和正式工人乙生產(chǎn)的產(chǎn)品各100件的檢測結(jié)果統(tǒng)計如下:
測試指標 | ||||||
甲 | 5 | 15 | 35 | 35 | 7 | 3 |
乙 | 3 | 7 | 20 | 40 | 20 | 10 |
根據(jù)上表統(tǒng)計得到甲、乙生產(chǎn)產(chǎn)品等級的頻率分別估計為他們生產(chǎn)產(chǎn)品等級的概率.
(1)求出乙生產(chǎn)三等品的概率;
(2)求出甲生產(chǎn)一件產(chǎn)品,盈利不小于30元的概率;
(3)若甲、乙一天生產(chǎn)產(chǎn)品分別為40件和30件,估計甲、乙兩人一天共為企業(yè)創(chuàng)收多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】A市積極倡導學生參與綠色環(huán);顒樱渲写枮“環(huán)保衛(wèi)士——12369”的綠色環(huán);顒有〗M對2014年1月——2014年12月(一年)內(nèi)空氣質(zhì)量指數(shù)進行監(jiān)測,下表是在這一年隨機抽取的100天的統(tǒng)計結(jié)果:
指數(shù)API | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中重度污染 | 重度污染 |
天數(shù) | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
(1)若A市某企業(yè)每天由空氣污染造成的經(jīng)濟損失P(單位:元)與空氣質(zhì)量指數(shù)(記為t)的關系
為:,在這一年內(nèi)隨機抽取一天,估計該天經(jīng)濟損失元的概率;
(2)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季節(jié),其中有8天為重度污染,完成列聯(lián)表,并判斷是
否有的把握認為A市本年度空氣重度污染與供暖有關?
非重度污染 | 重度污染 | 合計 | |
供暖季 | |||
非供暖季節(jié) | |||
合計 | 100 |
下面臨界值表供參考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | p>5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com