如圖,設(shè)F是橢圓的左焦點,直線l為對應(yīng)的準線,直線l與x軸交于P點,線段MN為橢圓的長軸,已知|MN|=8,且|PM|=2|MF|.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)求證:對于任意的割線PAB,恒有∠AFM=∠BFN;
(Ⅲ)求三角形△ABF面積的最大值.

【答案】分析:(1)由|MN|=8,知a=4,由|PM|=2|MF|,知,由此能求出橢圓的標準方程.
(2)當AB的斜率為0時,顯然∠AFM=∠BFN=0,滿足題意,當AB的斜率不為0時,設(shè)AB方程為x=my-8,代入橢圓方程整理得:(3m2+4)y2-48my+144=0.△=576(m2-4),.由此能夠證明對于任意的割線PAB,恒有∠AFM=∠BFN.
(3),當且僅當取到等號.由此能求出三角形△ABF面積的最大值.
解答:解:(1)∵|MN|=8,
∴a=4,
又∵|PM|=2|MF|,
,
∴c=2,b2=a2-c2=12,
∴橢圓的標準方程為.  (3分)
(2)當AB的斜率為0時,顯然∠AFM=∠BFN=0,滿足題意,
當AB的斜率不為0時,設(shè)AB方程為x=my-8,
代入橢圓方程整理得:(3m2+4)y2-48my+144=0.
△=576(m2-4),
==,

∴kAF+kBF=0,從而∠AFM=∠BFN.
綜合可知:對于任意的割線PAB,恒有∠AFM=∠BFN.(8分)
(3)
即:,
當且僅當,即(此時適合于△>0的條件)取到等號.
∴三角形△ABF面積的最大值是.       (13分)
點評:本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與橢圓的相關(guān)知識,解題時要注意合理地進行等價轉(zhuǎn)化.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

(13分)如圖,設(shè)F是橢圓的左焦點,直線l為其左準線,直線l與x軸交于點P,線段MN為橢圓的長軸,已知

   (1)求橢圓C的標準方程;

   (2)若過點P的直線與橢圓相交于不同兩點A、B求證:∠AFM=∠BFN;

   (3)求三角形ABF面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年天津25中高三(下)月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,設(shè)F是橢圓的左焦點,直線l為左準線,直線l與x軸交于P點,MN為橢圓的長軸,已知,且
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點P作直線與橢圓交于A、B兩點,求△ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年湖北省天門市岳口高中高考數(shù)學(xué)沖刺試卷3(理科)(解析版) 題型:解答題

如圖,設(shè)F是橢圓的左焦點,直線l為對應(yīng)的準線,直線l與x軸交于P點,線段MN為橢圓的長軸,已知|MN|=8,且|PM|=2|MF|.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)求證:對于任意的割線PAB,恒有∠AFM=∠BFN;
(Ⅲ)求三角形△ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年北京市石景山區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

如圖,設(shè)F是橢圓的左焦點,直線l為左準線,直線l與x軸交于P點,MN為橢圓的長軸,已知,且
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點P作直線與橢圓交于A、B兩點,求△ABF面積的最大值.

查看答案和解析>>

同步練習冊答案