如圖,已知橢圓C:+y2=1(a>1)的上頂點為A,離心率為,若不過點A的動直線l與橢圓C相交于P,Q兩點,且·=0.
(1)求橢圓C的方程.
(2)求證:直線l過定點,并求出該定點N的坐標(biāo).
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十四第八章第五節(jié)練習(xí)卷(解析版) 題型:填空題
在平面直角坐標(biāo)系xOy中,已知橢圓C1:+=1(a>b>0)的左焦點為F1(-1,0),且點P(0,1)在C1上,
(1)求橢圓C1的方程.
(2)設(shè)直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十五第八章第六節(jié)練習(xí)卷(解析版) 題型:填空題
過雙曲線-=1(a>0,b>0)的左焦點且垂直于x軸的直線與雙曲線相交于M,N兩點,O為雙曲線的中心,·=0,則雙曲線的離心率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十二第八章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
當(dāng)a為任意實數(shù)時,直線(a-1)x-y+a+1=0恒過定點C,則以C為圓心,為半徑的圓的方程為( )
(A)x2+y2-2x+4y=0 (B)x2+y2+2x+4y=0
(C)x2+y2+2x-4y=0 (D)x2+y2-2x-4y=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十二第八章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
若直線3x+y+a=0過圓x2+y2+2x-4y=0的圓心,則a的值為( )
(A)-1 (B)1 (C)3 (D)-3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十九第八章第十節(jié)練習(xí)卷(解析版) 題型:選擇題
已知拋物線方程為y2=4x,直線l的方程為x-y+4=0,在拋物線上有一動點P到y軸的距離為d1,P到直線l的距離為d2,則d1+d2的最小值為( )
(A)+2 (B)+1 (C)-2 (D)-1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十三第八章第四節(jié)練習(xí)卷(解析版) 題型:解答題
已知圓O1的方程為x2+(y+1)2=6,圓O2的圓心坐標(biāo)為(2,1).若兩圓相交于A,B兩點,且|AB|=4,求圓O2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十七第八章第八節(jié)練習(xí)卷(解析版) 題型:填空題
坐標(biāo)平面上有兩個定點A,B和動點P,如果直線PA,PB的斜率之積為定值m,則點P的軌跡可能是:①橢圓;②雙曲線;③拋物線;④圓;⑤直線.試將正確的序號填在橫線上: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十四第三章第八節(jié)練習(xí)卷(解析版) 題型:解答題
在海岸A處,發(fā)現(xiàn)北偏東45°方向、距離A處(-1)海里的B處有一艘走私船;在A處北偏西75°方向、距離A處2海里的C處的緝私船奉命以10海里/小時的速度追截走私船.同時,走私船正以10海里/小時的速度從B處向北偏東30°方向逃竄,問緝私船沿什么方向能最快追上走私船?最少要花多少時間?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com