【題目】已知函數(shù)f(x)=ax+lnx(a∈R). (Ⅰ)若a=2,求曲線y=f(x)在x=1處切線的斜率;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=x2﹣2x+2,若對任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范圍.
【答案】解:(Ⅰ)由已知 ,則f'(1)=2+1=3. 故曲線y=f(x)在x=1處切線的斜率為3;
(Ⅱ) .
①當(dāng)a≥0時,由于x>0,故ax+1>0,f'(x)>0
所以,f(x)的單調(diào)遞增區(qū)間為(0,+∞).
②當(dāng)a<0時,由f'(x)=0,得 .
在區(qū)間 上,f'(x)>0,在區(qū)間 上f'(x)<0,
所以,函數(shù)f(x)的單調(diào)遞增區(qū)間為 ,單調(diào)遞減區(qū)間為 ;
(Ⅲ)由已知,轉(zhuǎn)化為f(x)max<g(x)max ,
因?yàn)間(x)=x2﹣2x+2=(x﹣1)2+1,x∈[0,1],
所以g(x)max=2…(9分)
由(Ⅱ)知,當(dāng)a≥0時,f(x)在(0,+∞)上單調(diào)遞增,值域?yàn)镽,故不符合題意.
當(dāng)a<0時,f(x)在(0,﹣ )上單調(diào)遞增,在(﹣ ,+∞)上單調(diào)遞減,
故f(x)的極大值即為最大值,f(﹣ )=﹣1+ln(﹣ )=﹣1﹣ln(﹣a),
所以2>﹣1﹣ln(﹣a),解得a<﹣
【解析】(Ⅰ)把a(bǔ)的值代入f(x)中,求出f(x)的導(dǎo)函數(shù),把x=1代入導(dǎo)函數(shù)中求出的導(dǎo)函數(shù)值即為切線的斜率;(Ⅱ)求出f(x)的導(dǎo)函數(shù),分a大于等于0和a小于0兩種情況討論導(dǎo)函數(shù)的正負(fù),進(jìn)而得到函數(shù)的單調(diào)區(qū)間;(Ⅲ)對任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等價于f(x)max<g(x)max , 分別求出相應(yīng)的最大值,即可求得實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)P在橢圓 +y2=1上,F(xiàn)1、F2分別是橢圓的兩焦點(diǎn),且∠F1PF2=60°,則△F1PF2的面積是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)選修4-5:不等式選講
已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).
(1)當(dāng)m=7時,求函數(shù)f(x)的定義域;
(2)若關(guān)于x的不等式f(x)≥2的解集是R,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點(diǎn),左焦點(diǎn)為 ,且過點(diǎn)D(2,0).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn) ,若P是橢圓上的動點(diǎn),求線段PA的中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時,f(x)=x2+ ,則f(﹣1)=( )
A.2
B.1
C.0
D.﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( ).
A. ,“”是“”的必要不充分條件
B. “且為真命題”是“或為真命題” 的必要不充分條件
C. 命題“,使得”的否定是:“”
D. 命題:“”,則是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣ ﹣ax+a,在區(qū)間[﹣2,2]有最小值﹣3
(1)求實(shí)數(shù)a的值,
(2)求函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+ (x>0,m>0)和函數(shù)g(x)=a|x﹣b|+c(x∈R,a>0,b>0).問:
(1)證明:f(x)在( ,+∞)上是增函數(shù);
(2)把函數(shù)g1(x)=|x|和g2(x)=|x﹣1|寫成分段函數(shù)的形式,并畫出它們的圖象,總結(jié)出g2(x)的圖象是如何由g1(x)的圖象得到的.請利用上面你的結(jié)論說明:g(x)的圖象關(guān)于x=b對稱;
(3)當(dāng)m=1,b=2,c=0時,若f(x)>g(x)對于任意的x>0恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com