(2013•濰坊一模)在約束條件
y≤x
y≥
1
2
x
x+y≤1
下,目標(biāo)函數(shù)z=x+
1
2
y
的最大值為( 。
分析:作出題中不等式組表示的平面區(qū)域,得如圖的△AB0及其內(nèi)部,再將目標(biāo)函數(shù)z=x+
1
2
y對(duì)應(yīng)的直線進(jìn)行平移,可得當(dāng)x=
2
3
,y=
1
3
時(shí),z取得最大值,得到本題答案.
解答:解:作出不等式組
y≤x
y≥
1
2
x
x+y≤1
表示的平面區(qū)域,

得到如圖的△AB0及其內(nèi)部,其中A(
2
3
,
1
3
),B(
1
2
,
1
2
),O(0,O)
設(shè)z=F(x,y)=x+
1
2
y,將直線l:z=x+
1
2
y進(jìn)行平移,
可得當(dāng)l經(jīng)過點(diǎn)A時(shí),目標(biāo)函數(shù)z達(dá)到最大值
∴z最大值=F(
2
3
,
1
3
)=
5
6

故選:C
點(diǎn)評(píng):本題給出二元一次不等式組,求目標(biāo)函數(shù)z=x+
1
2
y的最大值,著重考查了二元一次不等式組表示的平面區(qū)域和簡(jiǎn)單的線性規(guī)劃等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濰坊一模)設(shè)集合A={x|2x≤4},集合B為函數(shù)y=lg(x-1)的定義域,則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濰坊一模)如圖,在邊長(zhǎng)為2的菱形ABCD中,∠BAD=60°,E為BC中點(diǎn),則
AE
BD
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濰坊一模)某車隊(duì)準(zhǔn)備從甲、乙等7輛車中選派4輛參加救援物資的運(yùn)輸工作,并按出發(fā)順序前后排成一隊(duì),要求甲、乙至少有一輛參加,且若甲、乙同時(shí)參加,則它們出發(fā)時(shí)不能相鄰,那么不同排法種數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濰坊一模)已知數(shù)列{an}的各項(xiàng)排成如圖所示的三角形數(shù)陣,數(shù)陣中每一行的第一個(gè)數(shù)a1,a2,a4,a7,…構(gòu)成等差數(shù)列{bn},Sn是{bn}的前n項(xiàng)和,且b1=a1=1,S5=15.
( I )若數(shù)陣中從第三行開始每行中的數(shù)按從左到右的順序均構(gòu)成公比為正數(shù)的等比數(shù)列,且公比相等,已知a9=16,求a50的值;
(Ⅱ)設(shè)Tn=
1
Sn+1
+
1
Sn+2
+…+
1
S2n
,當(dāng)m∈[-1,1]時(shí),對(duì)任意n∈N*,不等式t3-2mt-
8
3
Tn
恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濰坊一模)復(fù)數(shù)z=
3+i
1-i
的共軛復(fù)數(shù)
.
z
=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案