設(shè)函數(shù)
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若方程上有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(3)證明:當(dāng)時(shí),
(1)時(shí),在上是增函數(shù);時(shí),在上單調(diào)遞增,在上單調(diào)遞減.(2),(3)詳見解析

試題分析:(1)求函數(shù)單調(diào)區(qū)間,首先明確定義域,再求導(dǎo),由于含有參數(shù),需分類討論根的情況. 時(shí),,所以上是增函數(shù).當(dāng)時(shí),由,所以上單調(diào)遞增,在上單調(diào)遞減.(2)本題考查函數(shù)與方程思想,實(shí)際研究直線與函數(shù)圖像交點(diǎn)有兩個(gè)的情況,由(1)知上單調(diào)遞增,在上單調(diào)遞減,且,所以當(dāng)時(shí),方程有兩解.(3)本題關(guān)鍵在于構(gòu)造函數(shù),首先將兩變量分離,這要用到取對(duì)數(shù),即因此只需證,即證為單調(diào)減函數(shù),可利用導(dǎo)數(shù),再結(jié)合(1)的結(jié)論,可證.
試題解析:(1)
時(shí),,∴上是增函數(shù).         1分
②當(dāng)時(shí),由,由,
上單調(diào)遞增,在上單調(diào)遞減.           4分
(2)當(dāng)時(shí),由(1)知,上單調(diào)遞增,在上單調(diào)遞減,
,              6分

∴當(dāng)時(shí),方程有兩解.            8分
(3)∵.∴要證:只需證
只需證:
設(shè),                               10分

由(1)知單調(diào)遞減,           12分
,即是減函數(shù),而
,故原不等式成立.                         14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某風(fēng)景區(qū)在一個(gè)直徑AB為100米的半圓形花園中設(shè)計(jì)一條觀光線路(如圖所示).在點(diǎn)A與圓
弧上的一點(diǎn)C之間設(shè)計(jì)為直線段小路,在路的兩側(cè)邊緣種植綠化帶;從點(diǎn)C到點(diǎn)B設(shè)計(jì)為沿弧的弧形小路,在路的一側(cè)邊緣種植綠化帶.(注:小路及綠化帶的寬度忽略不計(jì))
(1)設(shè)(弧度),將綠化帶總長(zhǎng)度表示為的函數(shù);
(2)試確定的值,使得綠化帶總長(zhǎng)度最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,函數(shù).
(1)如果時(shí),恒成立,求m的取值范圍;
(2)當(dāng)時(shí),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線.
(1)求曲線在點(diǎn)()處的切線方程;
(2)若存在使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

經(jīng)銷商用一輛型卡車將某種水果運(yùn)送(滿載)到相距400km的水果批發(fā)市場(chǎng).據(jù)測(cè)算,型卡車滿載行駛時(shí),每100km所消耗的燃油量(單位:)與速度(單位:km/h)的關(guān)系近似地滿足,除燃油費(fèi)外,人工工資、車損等其他費(fèi)用平均每小時(shí)300元.已知燃油價(jià)格為7.5元/L.
(1)設(shè)運(yùn)送這車水果的費(fèi)用為(元)(不計(jì)返程費(fèi)用),將表示成速度的函數(shù)關(guān)系式;
(2)卡車該以怎樣的速度行駛,才能使運(yùn)送這車水果的費(fèi)用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和為,對(duì)一切正整數(shù),點(diǎn)都在函數(shù)的圖像上,且過點(diǎn)的切線的斜率為.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),等差數(shù)列的任一項(xiàng),其中中所有元素的最小數(shù),,求的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若曲線在點(diǎn)處的切線與兩坐標(biāo)軸圍成的三角形的面積為,則實(shí)數(shù)的值是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù),在定義域上表示的曲線過原點(diǎn),且在處的切線斜率均為.有以下命題:
是奇函數(shù);②若內(nèi)遞減,則的最大值為4;③的最大值為,最小值為,則; ④若對(duì),恒成立,則的最大值為2.其中正確命題的序號(hào)為  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖象與的圖象關(guān)于直線對(duì)稱。
(Ⅰ)若直線的圖像相切, 求實(shí)數(shù)的值;
(Ⅱ)判斷曲線與曲線公共點(diǎn)的個(gè)數(shù).
(Ⅲ)設(shè),比較的大小, 并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案