如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,O為AC的中點(diǎn),設(shè)E是棱DD1上的點(diǎn),且
DE
=
2
3
DD1
,若
EO
=x
AB
+y
AD
+z
AA1
,則x+y+z的值為(  )
A、
5
6
B、-
5
6
C、-
2
3
D、
4
5
考點(diǎn):平面向量的基本定理及其意義
專題:空間向量及應(yīng)用
分析:
EO
=
ED
+
DO
DE
=
2
3
DD1
=
2
3
AA1
,
DO
=
1
2
DB
=
1
2
(
AB
-
AD
)
,化簡(jiǎn)整理可得
EO
=-
2
3
AA1
+
1
2
AB
-
1
2
AD
,與
EO
=x
AB
+y
AD
+z
AA1
比較即可得出.
解答: 解:∵
EO
=
ED
+
DO
,
DE
=
2
3
DD1
=
2
3
AA1
DO
=
1
2
DB
=
1
2
(
AB
-
AD
)
,
EO
=-
2
3
AA1
+
1
2
AB
-
1
2
AD
,
EO
=x
AB
+y
AD
+z
AA1

x=
1
2
,y=-
1
2
,z=-
2
3

∴x+y+z=-
2
3

故選:C.
點(diǎn)評(píng):本題考查了向量的三角形法則、空間向量基本定理,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中有兩點(diǎn)A(-1,3
3
)、B(1,
3
),以原點(diǎn)為圓心,r>0為半徑作一個(gè)圓,與射線y=-
3
x(x<0)交于點(diǎn)M,與x軸正半軸交于N,則當(dāng)r變化時(shí),|AM|+|BN|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于△ABC,總滿足:
CD
=sin2θ
CA
+cos2θ
CB
,
CD
AB
=
3
|AB|2,且
1
tan∠A
-
1
tan∠B
-
2
tan∠BDC
=1恒成立,則:
①△ABC一定是鈍角三角形;②CA<CB;③?x∈R,θ=x;
④∠ADC的最小值小于30°;⑤CD可能是一條中線;⑥∠C的最大值小于30°.
上述對(duì)于△ABC的描述錯(cuò)誤的是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=an+n+2n(n∈N*),則an等于( 。
A、
n(n-1)
2
+2n-1-1
B、
n(n-1)
2
+2n-1
C、
n(n+1)
2
+2n+1-1
D、
n(n-1)
2
+2n+1-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在梯形中ABCD,AB∥CD,AB=2CD,M,N分別是CD,AB的中點(diǎn),設(shè)
AB
=
e1
,
AD
=
e2

(1)在圖上作出向量
1
2
e1
+
e2
(不要求寫出作法)
(2)請(qǐng)將
MN
e1
,
e2
表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是圓F1:(x+1)2+y2=8上任意一點(diǎn),又F2(1,0),直線m分別與線段F1P,F(xiàn)2P交于M,N兩點(diǎn),且
MN
=
1
2
MF2
+
MP
),|
NM
+
F2P
|=|
NM
-
F2P
|.
(1)求點(diǎn)M的軌跡C的方程;
(2)直線x=my+2與橢圓交于A、B兩點(diǎn),點(diǎn)D在橢圓上,且
OA
+
OB
OD
,E(-
2
m
,
m-2
m
),設(shè)△EAB的面積為S,若0<S≤1,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C中,AB⊥BC,AB=4,BC=6,AA1=8,有一只螞蟻沿著三棱柱的表面從點(diǎn)A爬行到點(diǎn)C1,并且在棱BB1上的一點(diǎn)M稍作停頓,當(dāng)螞蟻爬行距離最短時(shí),BM的長(zhǎng)度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C與直線l:x+y-2=0和圓P:(x-6)2+(y-6)2=18均相切,求圓C的面積的最小值及此時(shí)圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(2α+
6
)=
1
3
,α∈(0,
π
3
),則sin2α=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案