定義在實(shí)數(shù)集R上的函數(shù)數(shù)學(xué)公式與y軸的交點(diǎn)為A,點(diǎn)A到原點(diǎn)的距離不大于1;
(1)求a的范圍;
(2)是否存在這樣的區(qū)間,使對任意a,f(x)在該區(qū)間上為增函數(shù)?若存在,求出該區(qū)間,若不存在,說明理由.

解:(1)函數(shù)圖象與y軸交點(diǎn)為(0,a),則|a|≤1,∴-1≤a≤1;------------------(3分)
(2)f'(x)=x2+(a-4)x+2(2-a)=(x-2)a+x2-4x+4,---------------(7分)
令f'(x)>0對任意的a∈[-1,1]恒成立,
即不等式g(a)=(x-2)a+x2-4x+4>0對任意的a∈[-1,1]恒成立,---(9分)
其充要條件是:,------------(11分)
解得x<1,或x>3.--------------(13分)
所以當(dāng)x∈(-∞,1)或x∈(3,+∞)時(shí),f'(x)>0對任意a∈[-1,1]恒成立,
所以對任意a∈[-1,1]函數(shù)f(x)均是單調(diào)增函數(shù).--------------(14分)
故存在區(qū)間(-∞,1)和(3,+∞),對任意a∈[-1,1],f(x)在該區(qū)間內(nèi)均是單調(diào)增函數(shù).
分析:(1)函數(shù)圖象與y軸交點(diǎn)為(0,a),則|a|≤1,從而可求
(2)對函數(shù)求導(dǎo),由函數(shù)f(x)在該區(qū)間上為增函數(shù)可得f'(x)>0對任意的a∈[-1,1]恒成立,構(gòu)造關(guān)于a的函數(shù)g(a)=(x-2)a+x2-4x+4>0對任意的a∈[-1,1]恒成,結(jié)合一次函數(shù)的性質(zhì)可求x的范圍
點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)與函數(shù) 的單調(diào)性的關(guān)系的應(yīng)用,解題的關(guān)鍵是根據(jù)導(dǎo)數(shù)的知識得到f'(x)>0對任意的a∈[-1,1]恒成立時(shí),構(gòu)造關(guān)于a的一次函數(shù)進(jìn)行求解,體現(xiàn)了轉(zhuǎn)化的思想在解題中的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、已知f(x)是定義在實(shí)數(shù)集R上的函數(shù),它的反函數(shù)為f-1(x),若f-1(x+a)與f(x+a)互為反函數(shù),且f(a)=a(a為非零常數(shù)),則f(2a)的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)是定義在實(shí)數(shù)集R上的函數(shù),那么y=-f(x+2)與y=f(6-x)的圖象(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在實(shí)數(shù)集R上的函數(shù)f(x)=
1
3
x3+
1
2
(a-4)x2+2(2-a)x+a
與y軸的交點(diǎn)為A,點(diǎn)A到原點(diǎn)的距離不大于1;
(1)求a的范圍;
(2)是否存在這樣的區(qū)間,使對任意a,f(x)在該區(qū)間上為增函數(shù)?若存在,求出該區(qū)間,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年寧夏銀川市高二(下)月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

定義在實(shí)數(shù)集R上的函數(shù)與y軸的交點(diǎn)為A,點(diǎn)A到原點(diǎn)的距離不大于1;
(1)求a的范圍;
(2)是否存在這樣的區(qū)間,使對任意a,f(x)在該區(qū)間上為增函數(shù)?若存在,求出該區(qū)間,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案