設(shè)函數(shù).(I)求函數(shù)的單調(diào)遞增區(qū)間;
(II) 若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍.

(Ⅰ);(Ⅱ)的取值范圍是

解析試題分析:(Ⅰ)求出導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)大于0求得的單調(diào)遞增區(qū)間.
(Ⅱ)令.利用導(dǎo)數(shù)求出的單調(diào)區(qū)間和極值點(diǎn),畫出其簡圖,結(jié)合函數(shù)零點(diǎn)的判定定理找出所滿足的條件,由此便可求出的取值范圍.
試題解析:(Ⅰ)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bd/7/ri4971.png" style="vertical-align:middle;" />, 

,則使的取值范圍為,
故函數(shù)的單調(diào)遞增區(qū)間為  
(Ⅱ)∵,
 
,  
,且,
,由.
在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間內(nèi)單調(diào)遞增, 
在區(qū)間內(nèi)恰有兩個(gè)相異實(shí)根   
解得:.
綜上所述,的取值范圍是  
考點(diǎn):1、導(dǎo)數(shù)及其應(yīng)用;2、函數(shù)的零點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)為常數(shù))的圖象過原點(diǎn),且對任意總有成立;
(1)若的最大值等于1,求的解析式;
(2)試比較的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

新晨投資公司擬投資開發(fā)某項(xiàng)新產(chǎn)品,市場評(píng)估能獲得萬元的投資收益.現(xiàn)公司準(zhǔn)備制定一個(gè)對科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎(jiǎng)金不低于萬元,同時(shí)不超過投資收益的.
(1)設(shè)獎(jiǎng)勵(lì)方案的函數(shù)模型為,試用數(shù)學(xué)語言表述公司對獎(jiǎng)勵(lì)方案的函數(shù)模型的基本要求.
(2)下面是公司預(yù)設(shè)的兩個(gè)獎(jiǎng)勵(lì)方案的函數(shù)模型:
;    ②
試分別分析這兩個(gè)函數(shù)模型是否符合公司要求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求的值;
(2)判斷上的單調(diào)性,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù),滿足,且方程有兩個(gè)相等的實(shí)根.
(1)求函數(shù)的解析式;
(2)當(dāng)時(shí),求函數(shù)的最小值的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(其中)的圖象如圖所示.

(1) 求函數(shù)的解析式;
(2) 設(shè)函數(shù),且,求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是定義在上的奇函數(shù),且當(dāng)時(shí),
(Ⅰ)求的表達(dá)式;
(Ⅱ)判斷并證明函數(shù)在區(qū)間上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(Ⅰ)若,求函數(shù)在區(qū)間上的最值;
(Ⅱ)若恒成立,求的取值范圍. (注:是自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5b/f/uegsy3.png" style="vertical-align:middle;" />的函數(shù),其導(dǎo)函數(shù)為.若對,均有,則稱函數(shù)上的夢想函數(shù).
(Ⅰ)已知函數(shù),試判斷是否為其定義域上的夢想函數(shù),并說明理由;
(Ⅱ)已知函數(shù),)為其定義域上的夢想函數(shù),求的取值范圍;
(Ⅲ)已知函數(shù),)為其定義域上的夢想函數(shù),求的最大整數(shù)值.

查看答案和解析>>

同步練習(xí)冊答案