【題目】在學(xué)習(xí)強(qiáng)國活動中,某市圖書館的科技類圖書和時政類圖書是市民借閱的熱門圖書.為了豐富圖書資源,現(xiàn)對已借閱了科技類圖書的市民(以下簡稱為“問卷市民”)進(jìn)行隨機(jī)問卷調(diào)查,若不借閱時政類圖書記1分,若借閱時政類圖書記2分,每位市民選擇是否借閱時政類圖書的概率均為,市民之間選擇意愿相互獨立.
(1)從問卷市民中隨機(jī)抽取4人,記總得分為隨機(jī)變量,求
的分布列和數(shù)學(xué)期望;
(2)(i)若從問卷市民中隨機(jī)抽取人,記總分恰為
分的概率為
,求數(shù)列
的前10項和;
(ⅱ)在對所有問卷市民進(jìn)行隨機(jī)問卷調(diào)查過程中,記已調(diào)查過的累計得分恰為分的概率為
(比如:
表示累計得分為1分的概率,
表示累計得分為2分的概率,
),試探求
與
之間的關(guān)系,并求數(shù)列
的通項公式.
【答案】(1)分布列見解析,6;(2)(i);(ⅱ)
,
.
【解析】
(1)獨立重復(fù)試驗,列出隨機(jī)變量可能取值為4,5,6,7,8,再求出各可能值的概率可解得.
(2)(i)總分恰為分的概率
是等比數(shù)列,用基本量計算.
(2)(ⅱ)遞推數(shù)列化為等比數(shù)列求解.
(1)的可能取值為4,5,6,7,8,
,
所有的分布列為
4 | 5 | 6 | 7 | 8 | |
所以數(shù)學(xué)期望.
(2)(i)總分恰為分的概率為
,
所以數(shù)列是首項為
,公比為
的等比數(shù)列,
前10項和.
(ii)已調(diào)查過的累計得分恰為分的概率為
,得不到
分的情況只有先得
分,再得2分,概率為
.
因為,即
,
所以,
則是首項為
,公比為
的等比數(shù)列,
所以,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某兩名高三學(xué)生連續(xù)9次數(shù)學(xué)測試的成績(單位:分)進(jìn)行統(tǒng)計得到如下折線圖.下列有關(guān)這兩名學(xué)生數(shù)學(xué)成績的分析中,正確的結(jié)論是( )
A.甲同學(xué)的成績折線圖具有較好的對稱性,與正態(tài)曲線相近,故而平均成績?yōu)?/span>130分
B.根據(jù)甲同學(xué)成績折線圖中的數(shù)據(jù)進(jìn)行統(tǒng)計,估計該同學(xué)平均成績在區(qū)間內(nèi)
C.乙同學(xué)的數(shù)學(xué)成績與測試次號具有比較明顯的線性相關(guān)性,且為正相關(guān)
D.乙同學(xué)在這連續(xù)九次測驗中的最高分與最低分的差超過40分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:指數(shù)函數(shù)在R上是單調(diào)減函數(shù);命題q:關(guān)于x的方程
有實根,
(1)若p為真,求a的范圍
(2)若q為真,求的范圍
(3)若p或q為真,p且q為假,求實數(shù)a的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】按照下列要求,分別求有多少種不同的方法?
(1)5個不同的小球放入3個不同的盒子;
(2)5個不同的小球放入3個不同的盒子,每個盒子至少一個小球;
(3)5個相同的小球放入3個不同的盒子,每個盒子至少一個小球;
(4)5個不同的小球放入3個不同的盒子,恰有1個空盒.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)
的圖象在
處的切線方程;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時,若方程
有兩個不相等的實數(shù)根
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時,證明:
;
(Ⅲ)求證:對任意正整數(shù),都有
(其中
為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在
上單調(diào)遞增,求實數(shù)
的取值范圍;
(2)設(shè),若
,恒有
成立,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓
的右焦點為
,左、右頂點分別為
、
,上、下頂點分別為
、
,連結(jié)
并延長交橢圓于點
,連結(jié)
,
,記橢圓
的離心率為
.
(1)若,
.
①求橢圓的標(biāo)準(zhǔn)方程;
②求和
的面積之比.
(2)若直線和直線
的斜率之積為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個口袋內(nèi)有個不同的紅球,
個不同的白球,
(1)從中任取個球,紅球的個數(shù)不比白球少的取法有多少種?
(2)若取一個紅球記分,取一個白球記
分,從中任取
個球,使總分不少于
分的取法有多少種?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com