【題目】已知拋物線C:()的焦點(diǎn)F到準(zhǔn)線l的距離為2,直線過點(diǎn)F且與拋物線交于M、N兩點(diǎn),直線過坐標(biāo)原點(diǎn)O及點(diǎn)M且與l交于點(diǎn)P,點(diǎn)Q在線段上.
(1)求直線的斜率;
(2)若,,成等差數(shù)列,求點(diǎn)Q的軌跡方程.
【答案】(1)0;(2)().
【解析】
(1)先求拋物線方程,再設(shè)直線方程以及M,N坐標(biāo),解得P點(diǎn)坐標(biāo),根據(jù)斜率公式化簡直線的斜率,最后聯(lián)立直線方程與拋物線方程,利用韋達(dá)定理代入化簡即得結(jié)果;
(2) 設(shè),根據(jù)等差中項(xiàng)性質(zhì)以及弦長公式化簡條件得,再根據(jù)(1)中韋達(dá)定理化簡右邊式子,最后根據(jù)代入化簡得點(diǎn)Q的軌跡方程.
(1)依題意,可得,所以拋物線C:.
設(shè)直線:,聯(lián)立,得.
設(shè),,易知,,則,,
直線:.
因?yàn)闇?zhǔn)線l:,故.
故直線的斜率為.
(2)設(shè)().
由(1)可得,,.
由題可知,
得.
因?yàn)?/span>,所以
化簡可得().
故點(diǎn)Q的軌跡方程為().
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱柱中,,點(diǎn)是的中點(diǎn),點(diǎn)在上,設(shè)二面角的大小為.
(1)當(dāng)時(shí),求的長;
(2)當(dāng)時(shí),求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1.
(Ⅰ)若直線PB與CD所成角的大小為,求BC的長;
(Ⅱ)求二面角B-PD-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某公司一種產(chǎn)品的日銷售量(單位:百件)關(guān)于日最高氣溫(單位:)的散點(diǎn)圖.
數(shù)據(jù):
13 | 15 | 19 | 20 | 21 | |
26 | 28 | 30 | 18 | 36 |
(1)請(qǐng)?zhí)蕹唤M數(shù)據(jù),使得剩余數(shù)據(jù)的線性相關(guān)性最強(qiáng),并用剩余數(shù)據(jù)求日銷售量關(guān)于日最高氣溫的線性回歸方程;
(2)根據(jù)現(xiàn)行《重慶市防暑降溫措施管理辦法》.若氣溫超過36度,職工可享受高溫補(bǔ)貼.已知某日該產(chǎn)品的銷售量為53.1,請(qǐng)用(1)中求出的線性回歸方程判斷該公司員工當(dāng)天是否可享受高溫補(bǔ)貼?
附:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線:的焦距為,直線()與交于兩個(gè)不同的點(diǎn)、,且時(shí)直線與的兩條漸近線所圍成的三角形恰為等邊三角形.
(1)求雙曲線的方程;
(2)若坐標(biāo)原點(diǎn)在以線段為直徑的圓的內(nèi)部,求實(shí)數(shù)的取值范圍;
(3)設(shè)、分別是的左、右兩頂點(diǎn),線段的垂直平分線交直線于點(diǎn),交直線于點(diǎn),求證:線段在軸上的射影長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)在等腰直角中,斜邊,為的中點(diǎn),將沿折疊得到如圖(2)所示的三棱錐.若三棱錐的外接球的半徑為3,則的余弦值______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知首項(xiàng)為的數(shù)列各項(xiàng)均為正數(shù),且,.
(1)若數(shù)列的通項(xiàng)滿足,且,求數(shù)列的前n項(xiàng)和為;
(2)若數(shù)列的通項(xiàng)滿足,前n項(xiàng)和為,當(dāng)數(shù)列是等差數(shù)列時(shí),對(duì)任意的,均存在,使得成立,求滿足條件的所有整數(shù)構(gòu)成的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海域有兩個(gè)島嶼,島在島正東4海里處,經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)出過魚群。以所在直線為軸,的垂直平分線為軸建立平面直角坐標(biāo)系.
(1)求曲線的標(biāo)準(zhǔn)方程;
(2)某日,研究人員在兩島同時(shí)用聲納探測(cè)儀發(fā)出不同頻率的探測(cè)信號(hào)(傳播速度相同),兩島收到魚群在處反射信號(hào)的時(shí)間比為,問你能否確定處的位置(即點(diǎn)的坐標(biāo))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,e是自然對(duì)數(shù)的底數(shù).
(1)若是上的增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com