設(shè)
e1
、
e2
是兩個(gè)單位向量,它們的夾角是60°,則(2
e1
-
e2
)•(-3
e1
+2
e2
)
=
 
分析:利用兩個(gè)向量的數(shù)量積的定義對(duì)(2
e1
-
e2
)•(-3
e1
+2
e2
)
=-6
e
2
+7
e1
 •
e2
-2
e2
2
  進(jìn)行運(yùn)算化簡(jiǎn).
解答:解:(2
e1
-
e2
)•(-3
e1
+2
e2
)
=-6
e
2
+7
e1
 •
e2
-2
e2
2
=-6+7×1×1cos60°-2=-
9
2

故答案為-
9
2
點(diǎn)評(píng):本題考查兩個(gè)向量的數(shù)量積的定義,數(shù)量積公式的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
e
1
e
2是兩個(gè)單位向量,夾角是60°,試求向量
a
=2
e
1+
e
2
b
=-3
e
1+2
e
2的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
e1
,
e2
是兩個(gè)單位向量,若
e1
e
2
的夾角為60°,求向量
a
=2
e1
+
e2
b
=-3
e1
+2
e2
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
e1
,
e2
是兩個(gè)單位向量,則下列結(jié)論中正確的是( 。
A、
e1
=
e2
B、
e1
e2
C、
e1
=-
e2
D、|
e1
|=|
e2
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)
e1
,
e2
是兩個(gè)單位向量,若
e1
e
2
的夾角為60°,求向量
a
=2
e1
+
e2
b
=-3
e1
+2
e2
的夾角.

查看答案和解析>>

同步練習(xí)冊(cè)答案