(2012•福建)函數(shù)f(x)=sin(x-
π
4
)的圖象的一條對稱軸是( 。
分析:將內(nèi)層函數(shù)x-
π
4
看做整體,利用正弦函數(shù)的對稱軸方程,即可解得函數(shù)f(x)的對稱軸方程,對照選項(xiàng)即可得結(jié)果
解答:解:由題意,令x-
π
4
=kπ+
π
2
,k∈z
得x=kπ+
4
,k∈z是函數(shù)f(x)=sin(x-
π
4
)的圖象對稱軸方程
令k=-1,得x=-
π
4

故選 C
點(diǎn)評:本題主要考查了正弦函數(shù)的圖象和性質(zhì),三角復(fù)合函數(shù)對稱軸的求法,整體代入的思想方法,屬基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津)函數(shù)f(x)=2x+x3-2在區(qū)間(0,1)內(nèi)的零點(diǎn)個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鷹潭一模)設(shè)函數(shù)f(x)=ex(sinx-cosx),若0≤x≤2012π,則函數(shù)f(x)的各極大值之和為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建)函數(shù)f(x)在[a,b]上有定義,若對任意x1,x2∈[a,b],有f(
x1+x2
2
) ≤
1
2
[f(x1) +f(x2) ]
則稱f(x)在[a,b]上具有性質(zhì)P.設(shè)f(x)在[1,3]上具有性質(zhì)P,現(xiàn)給出如下命題:
①f(x)在[1,3]上的圖象是連續(xù)不斷的;
②f(x2)在[1,
3
]上具有性質(zhì)P;
③若f(x)在x=2處取得最大值1,則f(x)=1,x∈[1,3];
④對任意x1,x2,x3,x4∈[1,3],有f(
x1+x2+x3+x4
4
) ≤
1
4
[f(x1)+f(x2)+f(x3)+f(x4)]
其中真命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上海)函數(shù)f(x)=
.
2cosx
sinx-1
.
的值域是
[-
5
2
,-
3
2
]
[-
5
2
,-
3
2
]

查看答案和解析>>

同步練習(xí)冊答案