【題目】如圖在三棱錐S﹣ABC中,△ABC是邊長(zhǎng)為2的正三角形,平面SAC⊥平面ABC,SA=SC= ,M為AB的中點(diǎn).
(I)證明:AC⊥SB;
(Ⅱ)求點(diǎn)B到平面SCM的距離.

【答案】(Ⅰ)證明:如圖,取AC的中點(diǎn)D,連接DS,DB.∵SA=SC,BA=BC,
∴AC⊥DS,且AC⊥DB,DS∩DB=D,
∴AC⊥平面SDB,又SB平面SDB,
∴AC⊥SB.
(Ⅱ)解:∵SD⊥AC,平面SAS⊥平面ABC,
∴SD⊥平面ABC.
如圖,過D作DE⊥CM于E,連接SE,則SE⊥CM,
∴在Rt△SDE中,SD=1,DE= ,
∴SE= .CM是邊長(zhǎng)為2的正△ABC的中線,∴CM=
=
=
設(shè)點(diǎn)B到平面SCM的距離為h,
則由VBSCM=VSBCM ,


【解析】(Ⅰ)欲證AC⊥SB,取AC中點(diǎn)D,連接DS、DB,根據(jù)線面垂直的性質(zhì)定理可知,只須證AC⊥SD且AC⊥DB,即得;(Ⅱ)設(shè)點(diǎn)B到平面SCM的距離為h,利用等體積法:VBSCM=VSCMB , 即可求得點(diǎn)B到平面SCM的距離.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面垂直的性質(zhì)的相關(guān)知識(shí),掌握垂直于同一個(gè)平面的兩條直線平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)f(x)= ,g(x)=log2x,關(guān)于x的不等式f(x)g(x)≥0對(duì)于任意x∈(0,+∞)恒成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x﹣3)2+(y﹣4)2=4
(1)若平面上有兩點(diǎn)A(1,0),B(﹣1,0),點(diǎn)P是圓C上的動(dòng)點(diǎn),求使|AP|2+|BP|2取得最小值時(shí)點(diǎn)P的坐標(biāo);
(2)若Q是x軸上的動(dòng)點(diǎn),QM,QN分別切圓C于M,N兩點(diǎn),①若 ,求直線QC的方程;②求證:直線MN恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量
(1)若 垂直,求k的值;
(2)若 平行,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(t,t),點(diǎn)M是圓O1:x2+(y﹣1)2= 上的動(dòng)點(diǎn),點(diǎn)N是圓O2:(x﹣2)2+y2= 上的動(dòng)點(diǎn),則|PN|﹣|PM|的最大值是(
A.1
B. ﹣2
C.2+
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O:x2+y2=2,⊙M:(x+2)2+(y+2)2=2,點(diǎn)P的坐標(biāo)為(1,1).
(1)過點(diǎn)O作⊙M的切線,求該切線的方程;
(2)若點(diǎn)Q是⊙O上一點(diǎn),過Q作⊙M的切線,切點(diǎn)分別為E,F(xiàn),且∠EQF= ,求Q點(diǎn)的坐標(biāo);
(3)過點(diǎn)P作兩條相異直線分別與⊙O相交于A,B,且直線PA與直線PB的傾斜角互補(bǔ),試判斷直線OP與AB是否平行?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f ( x)=ax3+bx2+cx+d 的圖象如圖所示,則 的取值范圍是(
A.(﹣ , ?)
B.(﹣ ,1)
C.(﹣
D.(﹣ ,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+(b﹣8)x﹣a﹣ab,當(dāng)x∈(﹣3,2)時(shí),f(x)>0,當(dāng)x∈(﹣∞,﹣3)∪(2,+∞)時(shí),f(x)<0.
(1)求f(x)的解析式;
(2)若不等式ax2+bx+c≤0的解集為R,求c的取值范圍;
(3)當(dāng)x>﹣1時(shí),求y= 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若0<x< ,則2x與3sin x的大小關(guān)系(
A.2x>3sin x
B.2x<3sin x
C.2x=3sin x
D.與x的取值有關(guān)

查看答案和解析>>

同步練習(xí)冊(cè)答案