如圖,在直三棱柱ABC-A1B1C1中,點M是A1B的中點,點N是B1C的中點,連接MN

(Ⅰ)證明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小
(Ⅰ)詳見解析;(Ⅱ);

試題分析:(Ⅰ)主要利用線線平行可證線面平行;(Ⅱ)通過作平行線轉化到三角形內解角;當然也可建系利用空間向量來解;
試題解析:(Ⅰ)證明:連接AB1,
∵四邊形A1ABB1是矩形,點M是A1B的中點,
∴點M是AB1的中點;∵點N是B1C的中點,
∴MN//AC,∵MN平面ABC,AC平面ABC,
∴MN//平面ABC        6分
(Ⅱ)解 :(方法一)如圖,作,交于點D,

由條件可知D是中點,連接BD,∵AB=1,AC=AA1=,BC=2,
∴AB2+AC2= BC2,∴AB⊥AC,
∵AA1⊥AB,AA1∩AC=A,∴AB⊥平面
∴AB⊥A1C, ∴A1C⊥平面ABD,∴為二面角A—A1C—B的平面角,在, ,
在等腰中,中點,, ∴中,,
中,,
∴二面角A——B的余弦值是    12分
(方法二) 三棱柱為直三棱柱,
,
, ∴,∴
如圖,建立空間直角坐標系,

則A(0,0,0), B(0,1,0), C(,0,0), A1(0,0,),
如圖,可取為平面的法向量,
設平面的法向量為,
,,
則由
,不妨取m=1,則,
可求得,      12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在幾何體中,,,,且,.

(I)求證:;
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

四棱錐中,⊥底面,,,.

(Ⅰ)求證:⊥平面;
(Ⅱ)若側棱上的點滿足,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐的底面是正方形,棱底面,,的中點.

(1)證明平面;
(2)證明平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在正方體ABCD-A1B1C1D1中,點P在直線BC1上運動時,有下列三個命題:①三棱錐AD1PC的體積不變;②直線AP與平面ACD1所成角的大小不變;③二面角P-AD1-C的大小不變.其中真命題的序號是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知一個平面與正方體的12條棱的夾角均為,那么        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在空間中,若、表示不同的平面,、表示不同直線,則以下命題中正確的有。 )
① 若,,,則
② 若,,則
③ 若,,則
④ 若,,,則
A.①④B.②③   C.②④  D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知三棱錐,平面平面,AB=AD=1,AB⊥AD,DB=DC,DB⊥DC

(1) 求證:AB⊥平面ADC;
(2) 求三棱錐的體積;
(3) 求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是兩條不同的直線,是兩個不同的平面,在下列條件中,能成為的充分條件的是(    )
A.,所成角相等
B.內的射影分別為,且
C.,
D.,

查看答案和解析>>

同步練習冊答案