已知二階矩陣M滿足M
1
0
=
1
0
,M
1
1
=
2
2
,則M2
1
-1
=
 
考點(diǎn):二階矩陣
專題:選作題,矩陣和變換
分析:設(shè)出要用的矩陣,根據(jù)所給的條件,得到關(guān)于所設(shè)的矩陣中字母的關(guān)系式.寫出矩陣M,最后把矩陣進(jìn)行平方變換,得到結(jié)果.
解答: 解:設(shè)M=
ab
cd

由M
1
0
=
1
0
,M
1
1
=
2
2
,
a
c
=
1
0
,
a+b
c+d
=
2
2

即a=1,b=1,c=0,d=2,
所以M=
11
02
,
所以M2=
13
04

所以M2
1
-1
=
-2
-4

故答案為:
-2
-4
點(diǎn)評(píng):本題考查矩陣的變換,是一個(gè)基礎(chǔ)題,這種題目解決的關(guān)鍵是看清題目利用方程思想解出要用的矩陣,再把矩陣進(jìn)行符合題目條件的變換.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,BC=3,AB=
6
,∠C=
π
4
,則∠A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知離散型隨機(jī)變量X的分布列為
X
X P
1 2 3
P
3
5
3
10
1
10
則X的數(shù)學(xué)期望E(X)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列數(shù)組:(1),(1,2),(1,2,1),(1,2,1,2),(1,2,1,2,1),(1,2,1,2,1,2),…按照此規(guī)律進(jìn)行下去.記第n個(gè)中各數(shù)的和為f(n)(n∈N*),則f(n)+f(n+1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x∈[0,+∞),則下列不等式恒成立的有:
 
 (填上相應(yīng)的序號(hào))
①ex≤1+x+x2
1
x+1
≤1-
1
2
x+
1
4
x2
③cosx≥1-
1
2
x2
④ln(1+x)≥x-
1
8
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①設(shè)z1,z2,z3∈C,若(z1-z22+(z2-z32=0,則z1=z3;
②兩個(gè)復(fù)數(shù)不能比較大。
③若z∈C則z-
z
是純虛數(shù);
④設(shè)z1,z2∈C,則“z1+z2∈R”是“z1與z2互為共軛復(fù)數(shù)”的必要不充分條件.
其中,真命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點(diǎn)(-2,3),傾斜角是直線3x+4y-5=0傾斜角一半的直線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)l,m表示兩條不同的直線,α、β表示兩個(gè)不同的平面,下列命題中真命題是( 。
A、若l?α,m∥α,則l∥m
B、若l?α,l∥m,則m∥α
C、若m∥α,m⊥β,則α⊥β
D、若m∥α,α⊥β,則m∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記等差數(shù)列{an}的前n項(xiàng)和為Sn,利用倒序求和的方法得Sn=
n(a1+an)
2
;類似地,記等比數(shù)列{bn}的前n項(xiàng)積為Tn,且bn>0(n∈N*),類比等差數(shù)列求和的方法,可將Tn表示成關(guān)于首項(xiàng)b1,末項(xiàng)bn與項(xiàng)數(shù)n的關(guān)系式為( 。
A、
(b1bn)n
B、
nb1bn
2
C、
nb1bn
D、
nb1bn
2

查看答案和解析>>

同步練習(xí)冊(cè)答案